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Kurzfassung

DBSCAN ist einer der weitverbreitetsten dichte-basierter Clustering Algorith-
men. Trotz seiner Effizienz in unterschiedlichen Clustering Szenarien stellt das
Finden von geeigneten Parametern eine nicht-triviale Aufgabe dar. Eine Vielzahl
an Parameterschätzungs- und Eliminationsverfahren wurden vorgeschlagen.
Dennoch sind angeführte Algorithmen oft nicht intuitiv in ihrer Handhabung
und ungeeignet für die Erkennung von Clustern unterschiedlicher Dichte. In
dieser Arbeit wird ein Algorithmus basierend auf alternatierender Optimierung
der Eingabeparameter zur Bestimmung einer lokal optimalen Parameterkombi-
nation für DBSCAN beschrieben. Dieser basiert auf einer Kombination zweier
hierarchischer Erweiterungen von DBSCAN, welche durch das Festsetzen eines
Parameters und Iterieren des zweiten freien Parameters erstellt werden. Durch
die Monotonie des Parameterraums können aufeinanderfolgende Ebenen der
Hierarchie effizient berechnet werden. Die erstellten Hierarchien werden weiter
analysiert, um eine geeignete Abschätzung des freien Parameters zu wählen
oder Cluster mit unterschiedlicher Dichte durch nicht horizontale Schnitte der
Clusterhierarchien zu extrahieren. Geeignete horizontale Schnitte werden durch
die Verwendung von internen Clustervalidierungsmaßen gefunden. In dieser
Arbeit werden zur Verfügung stehende interne Validierungsmaße verglichen und
eine dichte-basierte Version des Silhouetten Koeffizienten beschrieben. Unsere
Ergebnisse zeigen, dass dieser gut geeignet ist, um von DBSCAN generierbare
nicht-konvexe Cluster zu bewerten. Mit Hilfe des dichte-basierten Silhouetten
Koeffizient gelang es durch alternierende Optimierung zuverlässig geeignete
Parameterkombinationen für DBSCAN in einer Reihe von unterschiedlichen
Clustering Szenarien zu finden. Zudem zeigten sich nicht horizontale Schnitte
besonders nützlich zur Extraktion von Clustern unterschiedlicher Dichte.
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Abstract

DBSCAN is one of the most commonly used density-based clustering algorithms.
While it performs good in various clustering scenarios, finding appropriate pa-
rameters for the algorithm is a non-trivial task. Multiple works proposed pa-
rameter estimation or elimination techniques. However, most of the resulting
algorithms suffer from usability issues and the incapability of finding clusters of
different densities. In this work we propose an alternating optimization algorithm
to find locally optimal parameter combinations for DBSCAN. It combines two
hierarchical versions of DBSCAN, which are generated by fixing one parameter
and iterating through the parameter space of the other. Due to the monotonicity
of the parameter space, successive hierarchy levels can efficiently be computed.
Hierarchies generated this way can be analyzed to find an appropriate estimate
for the free parameter or finding clusters with different densities by the use of
non-horizontal cuts. An internal validation criterion is used to find an appropri-
ated horizontal. Throughout this work we compare multiple internal validation
measures and propose a density-based interpretation of the silhouette coeffi-
cient. Our results show that the proposed density-based silhouette coefficient
adapts well to non-convex clusters produced by DBSCAN. Also, the alternating
optimization approach automatically detects a good parameter combination in
a variety of clustering scenarios. Additionally, non-hierarchical cuts performed
especially well in the detection of clusters with different densities.



The validation of clustering structures is
the most difficult and frustrating part of cluster analysis.

Without a strong effort in this direction,
cluster analysis will remain a black art accessible only to those

true believers who have experience and great courage.

Anil K. Jain and Richard C. Dubes

vii





1
Introduction and Motivation

1.1 Motivation

The automatic extraction of information and knowledge from data is a

well-studied task in the field of digital data analysis. Clustering is a com-

mon problem of this field and describes the task of extracting groups of

similar objects in data sets. A large variety of algorithms for clustering

is openly available and many real world applications make use of them.

However, the user base is still restricted to experts, who can adapt the

methods to a certain data setting. The non-trivial choice which algorithm

to use and how to configure parameters can have a large influence on the

clustering results. Finally, obtained results can often difficult to be validate

or interpret by the user.

As the introductory quote by JAIN und DUBES (1988) warns, the knowledge

gap between clustering experts and users is about to grow. Especially, fur-

ther effort is needed in the field of cluster validation. As was already men-

tioned, methods for parameter estimation are needed as well to support

non-expert users in the application of clustering algorithms. This thesis

will specifically focus on the elimination of parameters and the validation

of obtained results.

Easier applicable clustering algorithms and understandable feedback of

the clustering structure can benefit users and experts. Additionally, over-

coming the knowledge gap can help to establish clustering solutions in

new business areas by providing confidence in the methods’ results.

1



2 CHAPTER 1. INTRODUCTION AND MOTIVATION

1.2 Aim of this thesis

A widely used clustering paradigm is the class of density-based methods.

They divide the data set into sets of dense areas, which are separated by

sparse areas. Throughout the years a variety of methods were developed

to cover multiple applications and try to avoid problems of previous algo-

rithms. However, each of the current methods has its limitations.

Methods like DBSCAN and DENCLUE can only provide a flat clustering.

Whereas hierarchical methods like gSkeletonClu are not able to condense

the hierarchy of clusterings and can hinder the user from detecting most

significant structures. Still, multiple methods, even hierarchical methods

like OPTICS, cannot extract clusters of differing density. Additionally, each

of the named methods depends on one or more critical input parameters,

which have significant influence in the results of the clustering algorithm.

However, most algorithms lack of methods for parameter estimation and,

therefore, make it difficult to adjust the algorithm to a specific dataset

(CAMPELLO et al., 2013).

Referring to the No-free-Lunch-theorem (WOLPERT, 1995), it will not be

possible to develop one single method, which is successful in every clus-

tering scenario. However, this work will try to tackle listed limitations as

best as possible and aims for the development of suitable extensions of

the DBSCAN algorithm. Further, the topics user interaction and report-

ing interpretable results will be covered in this thesis to facilitate the user

experience of proposed extensions.

1.3 Structure of this thesis

The thesis on hand will be structured as follows: Chapter 2 will review gen-

eral clustering concepts and present common clustering algorithms. Spe-

cial focus will lie on the class of density-based clustering algorithms as well

as clustering validation techniques discussed at the end of this chapter.

Further on, enhancements of the DBSCAN algorithm will be covered in

Chapter 3. Based on monotonicity characteristics of both DBSCAN pa-

rameters we will propose two hierarchical versions of the DBSCAN algo-

rithm. These can be combined to an alternating optimization approach.
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Thus, using an objective function for the optimization process can substi-

tute the parameter choice. Furthermore, we will analyze characteristics

of obtained clustering hierarchies. Finally, multiple visualizations will be

presented to support the user in interpreting the results.

A general comparison of the new developed algorithm and its alternatives

will be covered in Chapter 4. External cluster validation indices will be

used for a comparison of the clustering accuracy in a variety of scenarios.

Final remarks on the proposed enhancements, algorithms and visualiza-

tions will be included in Chapter 5. Since the scope of this thesis is limited

propositions for feature work on the topic of density-based hierarchical

clustering algorithms will be summarized at the end of this work.





2
Introduction to Clustering Analysis

Cluster analysis describes the task of finding sets of similar objects in data.

The discovered sets represent a compressed model of the original data.

This can include prototypes per cluster, hierarchical relations about the

data or found clusters and visualization of the dataset, e.g. using the clus-

tering for dimensionality reduction (BERKHIN, 2010).

This chapter will first review common cluster characteristics followed by

a description of the general clustering analysis process. Section 2.3 will

summarize the desired outcome types of this process. We will further

review common clustering algorithms in Section 2.4 to review common

representatives and for later analysis of the results in comparison to pro-

posed methods. The group of density-based clustering algorithms will be

discussed in more detail in Section 2.5. Limitations and disadvantages

of those methods will be summarized in Subsection 2.5.6. In Chapter 3

we will propose extensions for DBSCAN to cope with those limitations.

Furthermore, we will review cluster validation techniques in Section 2.6.

These will be used as basis for the evaluation chapter and internal rating

of interim results of proposed methods.

2.1 Definition of a cluster

While typical notions of clustering algorithms include the categorization

in hierarchical, partitioning and density based algorithms, this does only

describe the algorithms’ clustering strategy. Another way to describe clus-

ters is by their inherent properties. Three fundamental categories were

summarized by HANDL et al. (2005):

5



6 CHAPTER 2. INTRODUCTION TO CLUSTERING ANALYSIS

(a) Compactness (b) Connectedness (c) Spatial separation

Figure 2.1: Visualization of the three inherent properties of clusters.

Compactness: Objects in the same cluster should be similar to each other.

Algorithms searching for compact clusters will prefer clusters of

spherical shape, since the average variation would be the smallest

compared to other shapes.

Connectedness: A local approach is to assign spatially close or similar ob-

jects to the same cluster. A more concrete description would be the

following: a point is closer or more similar to one or more points

in a cluster than to any point not in the cluster. In contrast to al-

gorithms based on compactness, algorithms optimizing connected-

ness can adapt to various cluster shapes. However, they are easily

influenced by noise and cannot separate two clusters if they are not

spatially separated.

Spatial separation: While both other measures try to sort similar objects

into the same cluster, spatial separation demands dissimilar objects

to be assigned to different clusters as well as clusters being well sep-

arated from each other.

Figure 2.1 shows example structures for each cluster property. Figure 2.1a

depicts two clusters of spherical shape, which are connected in the middle.

The second example shows two spatially separated, but in itself connected

sickles. Figure 2.1c shows both previous cluster shapes, which are spatially

separated, such that the distance to at least one point in the same cluster

is always less than the distance to any point of the other cluster.

This work will compare density-based methods, which focus on the extrac-

tion of connected and spatial separated clusters. Algorithms in section 2.3

will be introduced with their correspondent clustering objectives. Cluster-

ing results will be compared within the evaluation chapter.
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2.2 Process model of cluster analysis

After clarifying what the process of cluster analysis tries to reveal in a

dataset, we will take a closer look at the process itself. As HANDL et al.

(2005) proposed, the process of clustering analysis can be divided into

three phases as shown in Figure 2.2.

First of all the data hast to be preprocessed. This can contain adjusting

attribute ranges, filtering noise, calculating distance or similarity of data

instances along with others. Each step can have an influence on the fi-

nal clustering result. The work of BONDER et al. (2012) showed that in

their experiments the applied preprocessing had a higher influence on

the final clustering result than the choice of the clustering algorithm. An-

other study suggests that special care has to be taken of the choice of the

distance measure, since the decision which distance measure should be

used can change the meaning and result of the obtained clustering (FINCH,

2005). Nonetheless, preprocessing methods will not be covered in this

work. The interested reader will find further information on the topic in

BERTHOLD et al. (2010).

Second phase of Handl’s process model is the cluster analysis phase, in

which the algorithm has to be chosen and applied. Methods differ in the

clustering in- and output. The user needs to find an algorithm that fits the

inherent properties of the dataset. Additional information like estimates

of the datasets distribution can improve the clustering process and its out-

come. However, choosing the correct input parameters is not a trivial task

and covered in many research papers (XU und WUNSCH II, 2005). An in-

troduction on clustering algorithms will be given in section 2.3.

The final phase of Handl’s clustering process model covers the analysis of

the clustering results. A drawback of most clustering algorithms is that

they will always enforce a clustering even if the data does not support any

such structure. However, multiple methods test the integrity of found clus-

ters and try to support the user in the validation of given results. Further,

the results can be used to iteratively improve preceding phases. For exam-

ple, additional attribute scaling or filtering can be applied or input param-

eters of the second phase can be adjusted. Clustering validation will be

covered in more detail in section 2.6.
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I – Preprocessing

feature selection;

normalization;

distance function

II – Cluster Analysis

Selection of algorithm

and respective parameters

III – Cluster Validation

Selection and application

of validation techniques

Figure 2.2: Three step process model of cluster analysis by HANDL et al. (2005).

The more general data mining model Cross Industry Standard Process for

Data Mining (CRISP-DM) (SHEARER et al., 2000) suggests further phases,

namely project understanding, data understanding, and deployment. All

of these phases focus on industrial applications and are not needed to

evaluate the general characteristics of a clustering algorithm. The remain-

ing phases data preparation, modeling and evaluation are covered by the

three step process model by HANDL et al. (2005).

ROUSSEEUW (1987) proposed the extend the cluster validation by making

the attempt to interpret the results in context of the dataset. Visualiza-

tions and general characteristics of the clustering algorithm can help the

user to interpret clustering results. Since the ultimate goal is to obtain

interpretable results in the sense of additional insights of the data, the re-

sulting clustering can be compared with existing expert knowledge or used

to validate previous constructed hypotheses. Chapter 5 of this thesis will

summarize the clustering results and possible implications for the area of

application of the proposed clustering techniques.

2.3 Types of clustering algorithms

While previous sections gave insights in the process of clustering analysis

and the definition of a cluster, this section will cover the definition of the

desired output of a clustering algorithm.

Given a set of input patterns X = {x1, . . . , x j , . . . , xN }, where each point

x j = (x j 1, x j 2, . . . , x j d ) ∈Rd is made of features x j i (also referred to as at-

tributes or dimensions) clustering algorithms have different specifications

of the desired type of clustering. XU und WUNSCH II (2005) differentiated

the following types of a clustering:
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(a) Two dimensions of
the Iris dataset

(b) true partition of
the dataset

(c) clustered dataset
using k-means

Figure 2.3: Flat clustering example of the Iris dataset using k-means.

Definition 1 ((hard) flat / partitional clustering) A flat or partitional clus-

tering is a partition of dataset X to C = {C1, · · · ,CK } with K ≤ N , such that

all sets C1 to CK (clusters) are non-empty, pairwise disjunct and their union

is equal to the original dataset X.

Flat clusterings can be used to find and describe groups in datasets. A

well known example in the field of clustering and classification analysis

is the taxonomy of plants in the iris dataset (FISHER, 1936). It consists of

the three types of the iris plant Iris setosa, Iris versicolor and Iris virginica,

which can be partitioned by using lengths and widths of their petals and

sepals. Figure 2.3 presents a partitional clustering of the iris dataset com-

pared to the unclustered dataset and the true partition. Except for few

mis-assignments in between the two clusters on the top right corner, the

clustering matches the true partition.

Nevertheless, does a flat partition not always suffice to represent the group

structure. Looking at the iris dataset two groups can be identified through

spatial separation. Using additional information about the number of data

points per group, we can assume that the top group has to be further di-

vided. In such a scenario a hierarchy of clusterings can be much more

appropriate and is defined by:

Definition 2 ((hard) hierarchical clustering) A hierarchical clustering is a

tree-like nested structured partition of X denoted by H = {C1, . . . ,CQ } with

Q ≤ N , where each hierarchy level represents a flat clustering. Clusterings

are ordered such that Ci ∈ Cm ,C j ∈ Cl , and m > l implies that either Ci ⊆C j

or Ci∩C j =;. The hierarchyH can be visualized using a tree, in which each
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(a) Average linkage
dendrogram of the
Iris dataset

(b) Average linkage
producing 2 clusters

(c) Average linkage
producing 3 clusters

Figure 2.4: Hierarchical clustering example of the Iris dataset using average
linkage and multiple horizontal cuts of the dendrogram.

subset relation Ci ⊆ C j between consecutive hierarchy levels is represented

as an edge from C j to Ci .

In comparison to the flat clustering of Figure 2.3, a hierarchical representa-

tion of the Iris dataset can be determined using hierarchical agglomerative

clustering with the average linkage criterion. The plots in Figure 2.4 show

the full dendrogram of the Iris dataset and two possible clusterings with

two and three clusters. It can be seen how the clusters in the top right

corner are merged in consecutive levels.

Both previous clustering definitions force all points to be assigned to one

specific cluster (per hierarchy level). Soft or also called fuzzy clustering

loosens this assumption and assigns a cluster membership degree to each

pair of points and clusters, such that a point can be part of multiple clus-

ters.

Definition 3 (soft / fuzzy clustering) Fuzzy clustering assigns a degree of

membership to each pair of points x ∈ X and C ∈ C. A point xi may belong

to the cluster C j with a degree of membership ui , j ∈ [0,1], such that:

|C|∑
j=1

ui , j = 1, ∀i

The total clustering can be represented as membership matrix U [|X|, |C|], in

which each cell U (i , j ) corresponds to the membership degree ui , j .

This definition allows us to have points to participate in multiple clusters.

A flat clustering can be obtained by assigning each point to the cluster with
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(a) True flat clustering
of the Iris dataset

(b) Fuzzy clustering of
the Iris dataset

Figure 2.5: Fuzzy clustering example of the Iris dataset using fuzzy-c-means (c=3).
Transparency values were related to the membership degree.

its highest degree of membership. Figure 2.5 shows a fuzzy clustering of

the Iris dataset.

In the following we will present common cluster algorithms. This work will

focus on density-based methods, which will be explained in more detail in

Section 2.5.

2.4 Exemplary clustering algorithms

2.4.1 K-Means

K-means is one of the standard partitioning algorithms (MACQUEEN,

1967). In an iterative approach the algorithm determines cluster centers

such that the average distance of each point to its nearest cluster center

is minimized. This is done by randomly initializing k cluster centroids. In

every iteration each point will be assigned to the nearest cluster center.

After this assignment phase all cluster centroids will be repositioned to

the center of all its assigned points. This process will be repeated until the

positions of the centroids converge.

The algorithm aims for minimizing the sum of squared errors (SSE) of all

points to their assigned cluster centroids:

SSE(C) =
K∑

k=1

∑
xi∈Ck

|xi − ck |2, (2.1)

where K is the number of clusters and ck the centroids of cluster Ck . The

described optimization process is a greedy algorithm, which is known to
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always converge and leading to a local optimum. Finding a global opti-

mum for its score function is known to NP-Hard (KIM et al., 2012).

2.4.2 Fuzzy C-Means

An extension of the k-means algorithm is fuzzy c-means (BEZDEK et al.,

1984). In contrary to the hard cluster assignment of the k-means algo-

rithm, fuzzy c-means assigns a membership degree ui j as it was defined

in Definition 3.

The target function of fuzzy c-means can be stated as:

J (U ,V ) =
|C|∑

i=1

N∑
k=1

um
i ,k d(ci , xk )2 (2.2)

Parameter m is known as fuzzifier. In case of m = 1 fuzzy c-means is equal

to standard k-means. The target function needs to be minimized under

the additional constraints for the membership degrees ui , j . Optimizing

the target function under those constraints leads to an update formula for

the cluster centers c and the membership degrees.

ci =
∑N

k=1 um
i ,k xk∑N

k=1 um
i ,k

ui ,k =
(∑|C|

j=1

(
d(ci ,xk )
d(c j ,xk )

) 2
m−1

)−1

(2.3)

The clustering starts by randomly choosing positions for the initial cluster

centers. In an iterative process the membership degrees and the cluster

centers can be recomputed using the formulas in Equation 2.3. This re-

computation can be repeated for a maximal number of iterations or until

the overall change of membership degrees is smaller than a fixed thresh-

old. Final membership degrees can be transformed to a flat clustering by

assigning each point to the cluster of its highest cluster membership de-

gree.

2.4.3 Hierarchical Agglomerative Clustering

Hierarchical agglomerative clustering describes a class of bottom-up algo-

rithms. The algorithms start by assigning each point to an individual clus-

ter and iteratively merging most similar clusters until every point belongs

to the same cluster. This way a hierarchy of clusters is generated.
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Table 2.1: Distance measures for hierarchical agglomerative clustering.

Linkage type distance measure

single linkage dsingle(Ci ,C j ) = mina∈Ci ,b∈C j {d(a,b)}

complete linkage dcomplete(Ci ,C j ) = maxa∈Ci ,b∈C j {d(a,b)}

average linkage daverage(Ci ,C j ) = 1
|Ci ||C j |

∑
a∈Ci ,b∈C j

{d(a,b)}

Complex similarity measures were proposed to match certain cluster

structures. Most commonly known are single, complete and average

linkage. Single linkage measures the distance of two clusters Ci and C j

by using the minimal distance between any pair of points a ∈ Ci ,b ∈ C j .

On the contrary complete linkage uses the maximal distance between any

pair of those points. Furthermore, average linkage defines the distance

of two clusters by the average distance of all pairwise distances between

points of both clusters. Table 2.1 summarizes the distance measures used

in all three clustering algorithms. Another type of distance criterion is

wards minimum variance (WARD, 1963), where the distance of two clus-

ters is calculated by the increase of SSE (Equation 2.1) this merge would

result in.

While single linkage optimizes for connectedness, complete and average

linkage both focus on compact clusters. The effects of each merging strat-

egy will be discussed in more details throughout the evaluation chapter.

2.5 Density Based Clustering

Clustering algorithms often do implicit assumptions about the shape of

clusters. Where the shape is known this can be a desired effect, since ap-

plying expert knowledge can increase the accuracy of the result. However,

in cases where the underlying model is unknown, methods enforcing cer-

tain cluster shapes can produce undesired results.

Another notion of clusters can be made through the estimation of density.

As presented in section 2.1 cluster properties as connectedness and spatial

separation can be used to justify the division of the data space into sparse

and dense regions, where the latter represents clusters.
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In physics density is known as mass per unit volume. Specifically number

density is an intensive quantity for the degree of concentration of count-

able objects in physical space. We will see that density based methods

loosen this definition by removing the condition of space being three-

dimensional, since number of dimensions most often exceeds three.

2.5.1 DBSCAN

A common representative of the class of density based clustering algo-

rithms is DBSCAN, which was proposed in ESTER et al. (1996). This thesis

will focus on enhancements of DBSCAN. Therefor, it will be described in

more detail than other representatives of this group of algorithms.

The DBSCAN algorithms searches for dense regions in spatial datasets. A

region is called dense if the region around a point with a radius of size ε

contains at least mPts objects. We use the following mathematical defini-

tions through the rest of this work:

Definition 4 (ε-neighborhood of a point) The ε-neighborhood of a point

consists of all points with a maximal distance of ε:

Nε(p) = { q ∈ X |d(p, q) ≤ ε } (2.4)

Definition 5 (core points) A point is denoted as core point if its ε-neigh-

borhood consists of at least mPts objects (including itself). The set of all core

points for a given pair of parameters will be referred to as coresε,mPts and be

defined as:

coresε,mPts = |{ p ∈ X |mPts ≤ |Nε(p)| }| (2.5)

With the set of cores and their respective ε-neighborhoods we already

have a description of dense regions of the dataset. Further definitions are

needed to combine dense regions to a set of clusters. The characteristic of

directly density-reachability describes the range of a dense region, when

density-reachability is further extended by allowing transitivity for a chain

of core-points.

Definition 6 ((directly) density-reachable) A point q is directly density-

reachable from point p, if q ∈ Nε(p) and p is a core-point. Note that the
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(a) Types of points and their encircled
neighborhood sets: core points = •,
border points =4, noise points =×.

o
q

p

(b) Density-reachability and density-
connectedness of core and border
points. Points p and q are density-
reachable by o and therefor density-
connected to each other.

Figure 2.6: Visualization of a DBSCAN clustering using ε= 0.5 and mPts = 5.

conditions p ∈ Nε(q) and q ∈ Nε(p) are equivalent. Furthermore, two

points p, q are density-reachable if a chain of points p1, . . . , pn exists with

p1 = p and pn = q such that for each 1 ≤ i < n, pi+1 is directly density-

reachable from pi .

A point which is density-reachable by a point p and is not a core point is

called border point, since it is part of a dense region. Points not belonging

to a dense region are called noise points.

Further on clusters are formed by strongly overlapping dense regions,

which is characterized by the density-connected property:

Definition 7 (density-connected) Two points p, q are density connected

to each other if there exists a point o from which both points are density-

reachable.

Previous definitions are exemplified in Figure 2.6. First, Sub-Figure 2.6a

shows representatives of each class of points in DBSCAN. While the num-

ber of points in the depicted ε-neighborhood of the core points exceeds

the mPts threshold, the ε-neighborhood sets of the remaining points

are not large enough. All points depicted as border points are density-

reachabil from at least one core point. The second part of the graphic,

Sub-Figure 2.6b, shows the reachability of the two border points p and

q from the core point o. For this reason both border points are density-

connected to each other. The remaining points which are marked as noise
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points do neither fulfill the core condition nor do they lie in any of the

core’s ε-neighborhood sets.

2.5.2 DENCLUE

The DENCLUE algorithm by HINNEBURG und KEIM (1998) generalizes the

density estimation of DBSCAN using influence functions. Let the influ-

ence of a point be defined by a function fB : X → R. Two examples for

influence functions are the square wave and the gaussian influence func-

tion:

fsquare(x, y) =
1 d(x, y) ≤σ

0 otherwise
fgauss(x, y) = exp− d(x,y)2

2σ2

The total density of a point can be calculated by the sum of influence func-

tions to all objects of the dataset. Let the total density of a point be defined

by its density function:

f D
B (x) =

N∑
i=1

fB (x, yi )

Local density maximums can be found by using a gradient function and

applying a local search. Equal to DBSCAN, DENCLUE defines core points

which exceed a density threshold ξ. Additionally the points representing a

local density maximum are used to define a cluster center.

Using the square wave function and setting the radius σ = ε and the

density threshold ξ = mPts produces equal results compared to DBSCAN.

While the problem of fixing two parameters remains the additional choice

of a density function is added in comparison to DBSCAN.

2.5.3 OPTICS

Both DBSCAN and DENCLUE produce flat clusterings based on one pa-

rameter combination defining the density threshold. OPTICS (ANKERST

et al., 1999) enhances the ideas of DBSCAN by determining an cluster or-

der, which describes nested structures of higher density in clusters of a

specified maximum ε value and a constant value of mPts.

This can be achieved by ordering the points in a cluster corresponding

to the minimal distance they would be density-reachabil by a core point.
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(a) Sample dataset (b) Reachability plot

Figure 2.7: Example dataset of convex clusters and respective reachability plot
(based on an illustration of ANKERST et al. (1999)).

We will later refer to this concept by reachability distance and will review

it throughout Subsection 3.2.1. Additionally the user is supported by a

new visualization technique called reachability-plot, which describes the

nested structure. One example is presented in Figure 2.7. Valleys in the

plot correspond to clusters in the dataset shown on the left.

A drawback of the OPTICS method is that their is no simplification of the

hierarchy of nested structures in the reachability-plot. No specification

exists for determining a flat clustering or reduce the hierarchy to a man-

ageable amount of levels.

2.5.4 CLIQUE

Another clustering technique called CLIQUE (AGRAWAL et al., 1998) is

based on subspace density. Clustering in high-dimensional datasets can

often be subdivided to multiple lower-dimensional subspaces to compute

the clustering.

CLIQUE utilizes this idea by checking for low-dimensional dense units in

a grid-based structure and expanding them by adding additional dimen-

sions. The density cannot increase by adding dimensions, since the grid

structure needs to be refined further subdivided by this dimension. If a

unit of k dimensions is dense, then all of its projections in subsets con-

taining k −1 dimensions are dense as well. For this reason the complexity

of CLIQUE is exponential in the highest dimensionality of any dense unit,

which discards it for the use in high dimensional datasets.
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2.5.5 HDBSCAN*

HDBSCAN* is a hierarchical version of DBSCAN* based on the iteration

of ε for a fixed value of mPts. It was initially proposed by CAMPELLO et al.

(2013). DBSCAN* ignores the existence of border points and classifies

points as either core or noise point. Clusters are composed of density-

connected core points. An efficient calculation is supported by the use of

a reachability graph and the minimum spanning tree algorithm.

We will aim for a similar approach in Section 3.2 but include border points

in the calculation. Additionally, we will show that same principle can be

applied for iterating values of mPts. The detailed algorithm and differences

to the version proposed by CAMPELLO et al. (2013) will be discussed later

throughout Chapter 3.

2.5.6 Limitations and drawbacks of current density-based algorithms

Methods like DBSCAN and DENCLUE can only provide a flat clustering.

The hierarchical algorithm HDBSCAN* copes with this problem by imple-

menting a hierarchical version of DBSCAN* but ignores the presence of

border points. While the number of border points contained in multiple

clusters is neglectable small in low dimensional datasets it grows with in-

creased dimensionality and value of mPts. Therefore, generated hierarchy

levels miss a lot of possible DBSCAN clusterings.

Another known disadvantage of previously listed density-based methods

is the dependency to critical input parameters. DBSCAN and DENCLUE

need an estimate for the ε and the mPts parameter. The first represents

an estimate for the spatial separation of the dataset. This can be problem-

atic in the case of high dimensional datasets, since the difference between

maximal and minimal distance is known to vanish:

lim
dim→inf

dmax −dmin

dmin
→ 0

This effect is also called curse of dimensionality. The OPTICS algorithm as

well as the HDBSCAN* algorithm avoid the estimation of ε and are only de-

pendent on the mPts parameter. While the influence of this parameter can

easily be visualized in low dimensional datasets, its estimation becomes

more difficult with growing number of dimensions.
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Additionally, neither DBSCAN, DENCLUE nor OPTICS are able to extract

clusters of differing density. HDBSCAN* reduces the hierarchy by rating

hierarchy levels by the amount of points being stable in comparison to the

levels before and after. This approach performed well in the evaluation

of CAMPELLO et al. (2013). However, the hierarchy generation is limited

to an appropriate choice of mPts. Adjusting mPts can greatly change the

structure of the hierarchy and therefore obtained results.

In Chapter 3 we propose extensions of DBSCAN to cope with mentioned

problems of density-based methods.

2.6 Cluster validation

A general problem of applying cluster analysis to a dataset is validating the

outcome. Independent from the analyzed dataset, algorithms will always

return a clustering result, even if no intrinsic structure is present.

Validation techniques can be used to rate the outcome of the clustering

algorithm and for example compare it to a known correct labeling. AGGAR-

WAL und REDDY (2013) sorted available evaluation measures into the two

categories external and internal measures. Additionally, visual evaluation

measures were emphasized by HALKIDI et al. (2002). External and inter-

nal validation measures will be reviewed in the following subsections. For

both categories we will present a selection of common measures, which

will later be used for the evaluation in Chapter 4. Visual evaluation mea-

sures will be picked up again in Section 3.5, where we will discuss adapta-

tions for several visualization techniques.

2.6.1 External evaluation measures

External validation measures compare the outcome of the clustering algo-

rithm to external information, which was not used during the clustering

process. Clustering is an unsupervised task, which means that true labels

per point are not available throughout the analysis. However, if the dataset

contains a true partition we can use it to validate obtained results.

Common approaches use a contingency matrix to compare the label as-

signed by the clustering algorithm with the true label. Let a contingency

matrix be defined by:
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Table 2.2: General contingency matrix

C1 C2 · · · CK ′
∑

P1 n11 n12 · · · n1K ′ n1·
P2 n21 n22 · · · n2K ′ n2·
· · · · · · · ·

PK nK 1 nK 2 · · · nK K ′ nK ·∑
n·1 n·2 · · · n·K ′ n

Definition 8 (Contingency matrix) Given a dataset X containing n ob-

jects, with a desired partition P = {P1,P2, . . . ,PK } and the clustered par-

tition C = {C1,C2, . . . ,CK ′}. The contingency matrix counts the number of

occurrences ni j , where a point was labeled as cluster C j but lies in the true

partition Pi .

Table 2.2 represents a general contingency matrix of the clustering C and

the true partition P. For the calculation of external validation measures we

will make use of the following probabilities described by the occurrences

in the contingency matrix:

pi j =
ni j

n
; pi = n·i

n
; p j =

n j ·
n

(2.6)

Entropy (E)

Entropy is a concept of information theory, where it is used to describe the

information contained in a message received. A clustering C can be seen

as information source about the true structure P of the dataset and can be

tested as predictor for exactly the same. In this sense the formula for the

entropy of a clustering can be formulated as:

E(C,P) =−∑
i

pi

(∑
j

pi j

pi
log

pi j

pi

)
(2.7)

Entropy has a range of [0, logK ′]. Values near 0 describe a approximately

perfect clustering, where each cluster Ci is congruent with a partition P j .

The maximal value of logK ′ states that any point in a cluster Ci is equiprob-

able to be in any partition P j .
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Purity (P)

A closely related concept to entropy is purity, which is described by the

extent in which a cluster contains objects of a single class (TAN et al., 2005).

P(C,P) =∑
i

pi

(
max

j

pi j

pi

)
(2.8)

The range for the purity measure is (0,1]. An optimal clustering assigns all

nodes of a cluster to the same partition and therefor achieves a value of 1.

F-Measure (F)

The f-measure is based on the harmonic mean of the two concepts preci-

sion and recall from the information retrieval community. The combina-

tion of both measures the extent in which clusters contain only objects of

one true partition (precision) and the extent in which a cluster contains

all elements of this partition (recall). The measure can be described by the

following formula:

F(C,P) =∑
j

p j max
i

 2
pi j

pi

pi j

p j

pi j

pi
+ pi j

p j

 (2.9)

As it is the case for purity, the f-measure shares the range of (0,1], where

an optimal clustering achieves a value of 1.

Mutual information (MI)

Mutual information measures the degree of in which two random vari-

ables are mutual dependent on each other (BELLAMY et al., 1991). It is

based on a comparison of the variables joint distribution and the prod-

ucts of their marginal distributions. Mutual information can be calculated

by:

MI(C,P) =∑
i

∑
j

pi j log

(
pi j

pi p j

)
(2.10)

The MI-score ranges from (0, log K ′]. Testing two independent random

variables will result in values near 0, whereas dependent variable pairs re-

sult in higher values.
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Homogeneity (Hom)

Homogeneity shares the general concept with purity and measures the ex-

tent in which every cluster only contains elements of one single class. The

homogeneity of a clustering C and the true partition P can be calculated

by applying the following formula:

Hom(C,P) =


MI(C,P)
E(P,P ) ,E(P,P ) > 0

1.0 ,el se
(2.11)

It results in score in a range of [0,1], whereat a value of 1 represents are

perfect homogeneous clustering.

Completeness (Compl)

In contrast to homogeneity, completeness tests for all data points of one

class being part of the same cluster. The completeness score of a clustering

C and a true partition P is given by the formula:

Compl(C,P) =
 M I

MI(C,P)(C,C) ,E(C,C) > 0

1.0 ,el se
(2.12)

The range of this score is [0,1], whereat values near 1 describe a perfect

clustering in the sense of completeness.

V-measures (V)

The v-measure is based on the harmonic mean of homogeneity and com-

pleteness. This combination follows a similar concept as the f-measure,

but showed superior results in experiments by ROSENBERG und HIRSCHBERG

(2007). The v-measure can be calculated by:

V(C,P) = 2 ·Hom(C,P) ·Compl(C,P)

Hom(C,P)+Compl(C,P)
(2.13)

2.6.2 Internal evaluation measures

A drawback of external measures is that true labels are most often to com-

plicated to receive or simply not available. Internal measures try to rate
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the outcome of the clustering by comparing the structure of the dataset to

the clustering.

Some clustering algorithms, as k-means, already use internal validation

measures like the SSE as objective functions to find an optimal cluster-

ing. In the following we will review multiple internal validation measures,

which will later be discussed for the use as an optimization criterion for

proposed algorithms. Validation measures were chosen based on a sum-

mary in AGGARWAL und REDDY (2013).

Silhouette coefficient (S)

The silhouette coefficient ROUSSEEUW (1987) compares the tightness of a

cluster in comparison to its separation to other clusters.

Let the silhouette of point i be defined as:

s(i ) = b(i )−a(i )

max{a(i ),b(i )}
(2.14)

where a(i ) is the average distance to points in the same cluster as point

i and b(i ) the minimum distance to points of other clusters. The silhou-

ette of a point ranges from (−1,1). Negative values indicate that points of

other clusters are nearer than points of the cluster the point was assigned

to. Points in between two clusters will result in a silhouette near 0, whereas

points of well separated clusters will score values near 1.

The silhouette coefficient is defined as the arithmetic mean of all silhou-

ettes of points in a cluster Ci .

sCi =
1

nCi

∑
o∈Ci

s(o) (2.15)

Accordingly the silhouette score is the mean of the silhouette coefficients

of each cluster.

sC =
1

nC

∑
Ci∈C

sCi (2.16)

Since the silhouette coefficient is the mean of silhouettes, the range of the

silhouette coefficient is (−1,1).
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Dunn’s index (D)

The internal validation criterion proposed by DUNN (1974) is a compact-

ness oriented criterion, which measures the intercluster distance by the

minimum pairwise distance between points of different clusters and sets

it in relation to the intracluster distance determined by maximum diame-

ter along all clusters.

DC = min
i j

minx∈Ci ,y∈C j d(x, y)

maxk {maxa,b∈Ck
d (a,b)}

(2.17)

Dunn’s index is a non-negative score, which needs to be maximized for

optimal results.

The index as well as the I index (MAULIK und BANDYOPADHYAY, 2002) and

the Calinski-Harabasz index (CALINSKI und HARABASZ, 1974) are indices

based on a weighted comparison of cluster compactness and cluster sep-

aration. For this reason only Dunn’s index will be used for a comparison

with the other validation indices.

Clustering Validation Index based on Nearest Neighbor (CVNN)

Other than the previous measures the clustering validation index based

on nearest neighbors evaluates intercluster separation based on the neigh-

borhood of each point (LIU et al., 2013). Points with neighborhoods that

were mainly assigned to the same cluster do only little influence the assess-

ment of intercluster separation. Whereas points, whose neighborhoods

include points assigned to other clusters have a higher weighted influence

on the estimation of intercluster separation.

The CVNN score of a clustering C from a set of alternative clusterings

Γ= {C1, . . . ,Cm} and a neighborhood set size of k is determined by the

following formulas:

CVNNC(Γ,k) = SepC(k)

maxC′∈Γ
(
SepC′(k)

) + ComC(k)

maxC′∈Γ (ComC′(k))
(2.18)

ComC(k) = ∑
Ci∈C

(
1

ni (ni −1)

∑
x,y∈Ci

d(x, y)

)
with ni = |Ci | (2.19)

SepC(k) = max
Ci∈C

(
1

ni

∑
j=1,2,...,ni

qi

k

)
(2.20)
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where qi is equal to the number of nearest neighbors belonging to another

cluster than the j -th point of Ci .

CVNN compares the current clustering with a range of other possible clus-

terings. Results for separation (Sep) and compactness (Com) need to be

normalized through the range of clusterings to compare to. For optimal

results the score needs to be minimized.

Edge Correlation (ρ)

Another way to measure a clusterings goodness of fit to a dataset is

achieved by calculating a correlation coefficient between a cluster ma-

trix and the similarity matrix. As the cluster attributes connectedness

and spatial separation propose, data points assigned to the same cluster

should be more similar than points assigned to different clusters.

For the objective function we adapted the method edge correlation, which

was originally considered for validating graph clustering (BANSAL et al.,

2004) and used by TAN et al. (2005) for the evaluation of spatial data clus-

tering . Therefor we have to calculate the Pearson-correlation ρ of a n ×n

cluster matrix LC and a similarity matrix sim.

Cluster matrix LC is defined by:

LC(i , j ) =
1 , if i and j are in the same cluster

0 ,else

such that each entry (i , j ) of the matrix LC is 1 if i and j are in the same

cluster referring to C or 0 if not. For better visualization points can be re-

ordered by their clustering assignment. This results in a block diagonal

matrix: 
A1 0 · · · 0

0 A2 · · · 0
...

. . .
...

0 0 · · · Am


where Ak is a square matrix corresponding to cluster k.

The similarity matrix can be inferred from the distance matrix, which was

already calculated for the clustering process. We used 1−d(i , j ) as a sim-

ilarity measure. In case cells where reordered during the calculation of L,

the same transformation has to be applied to sim.
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Figure 2.8: Visualization of clusterings and corresponding edge correlation scores
of the Iris dataset. top row: Visualization of the Iris dataset and two clusterings
calculated using the k-means algorithm. bottom row: similarity and cluster
matrices with their corresponding edge correlation values.

The edge correlation ρC of a clustering C can be calculated as seen in:

ρC = ρ(LC ,sim) (2.21)

The Pearson-correlation coefficient ranges from [−1,1]. Values near 1 in-

dicate a desirable high correlation of the cluster matrix and the similarity

matrix.

A heatmap can be used for visual comparison of the matrices LC and sim.

Figure 2.8 shows the similarity matrix of the data of the Iris dataset, with

two clusterings and their corresponding heat similarity and cluster matri-

ces. Rating both clusterings using the edge correlation cluster matrix L1 is

better than L2, since it bas a higher correlation with the similarity matrix

(ρ(L1,sim) = 0.73 > 0.61 = ρ(L2,sim)).



3
Hierarchical Extensions of DBSCAN

This chapter will propose extensions of DBSCAN, which try to cope with

known disadvantages of density based clustering algorithms, such as in-

terpretability of parameters, compression of a clustering hierarchy, and

handling of differing density levels per cluster.

First, we will discuss the concept of monotonicity in context of the stan-

dard DBSCAN algorithm in Section 3.1. In the subsequent sections we

will propose two hierarchical density based clustering algorithms, namely

mPts-HDBSCAN and ε-HDBSCAN, which are dependent on only one pa-

rameter of DBSCAN. Multiple ways to handle produced hierarchies are

discussed in Section 3.3. Additionally, both algorithms were combined

in an alternating optimization approach, which will be introduced in Sec-

tion 3.4. The chapter is closed with proposals for appropriate visualiza-

tions of discussed algorithms.

Parts of this chapter’s content were already discussed in the recent paper

of DOCKHORN et al. (2015). It should be noted that these parts were devel-

oped during the work on this thesis.

3.1 Monotonicity

A well known property in function theory is monotonicity. Frequently it

can be exploited to reuse results for consecutive time steps. A typical ex-

ample is the a-priori property in the field of frequent item set mining. The

support of a set, the number of times a set occurs in different transactions

of the database, cannot increase if further elements are added to the set. A

logical implication for the search of frequent item sets is to stop the search

for supersets if the current set does not fulfill the minimum support con-

27
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Figure 3.1: Comparison of DBSCAN results for various parameter settings. Noise
points are marked with ×. row-wise: monotonic behavior related to ε, column-
wise: monotonic behavior related to mPts.

dition, since further extending them cannot increase their support. This

observation was made by AGRAWAL und SRIKANT (1994) and used in their

corresponding a-priori algorithm.

The frequent item set condition can be viewed as monotonic criterion. De-

creasing the minimum support value can only add further elements to the

set of frequent item sets. This is because every element fulfilling the sup-

port condition of the original minimum support value will also fulfill the

new minimum support value. For that reason consecutive runs of the a-

priori algorithm with decreasing support value only need to extend the

resulting frequent item sets of preceding runs.

Similar monotonicity observations can be made regarding the DBSCAN

algorithm. Adjusting the parameters ε and mPts monotonically influences

the reported cluster sizes (see Figure 3.1). This observation suggest to use

a similar approach as it was used in the a-priori algorithm to create con-

secutive clusterings of DBSCAN with varying parameters.
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The following subsections will prove monotonicity features in context of

the DBSCAN algorithm. We will later exploit these to speed up the calcula-

tion of DBSCAN clusterings with varying parameter combinations.

3.1.1 Monotonicity of the neighborhood set

DBSCAN includes the two parameters ε and mPts, which can be adjusted

for the search of differing clusterings. We will first observe how the change

of ε influences the clustering result.

For two radii ε1 > ε2 we can show that the neighborhood-set of each point

can only increase, since:

|{ q ∈ X |di st (p, q) ≤ ε1 }| ≥ |{ q ∈ X |di st (p, q) ≤ ε2 }|
|Nε1 (p)| ≥ |Nε2 (p)| (3.1)

The possible increase of the ε-neighborhood also influences the number

of cores. For a fixed value of mPts we can infer:

|{ p ∈ X |mPts ≤ |Nε1 (p)| }| ≥ |{ p ∈ X |mPts ≤ |Nε2 (p)| }|
|coresε1,mPts | ≥ |coresε2,mPts |

(3.2)

As shown in the previous formula, the core sets cannot decrease if the size

of the ε-neighborhood is increased. This can lead to multiple changes of

the cluster structure. For example when the neighborhood set of a point

increases it could become a core and either form a new cluster or con-

nect to one or more existing clusters. Additionally, new points can become

density-reachable in context of a core-point and therefore be added to the

cluster of the core-point.

3.1.2 Monotonicity of the core-condition

Instead of changing the size of neighborhood sets we can also directly in-

fluence the core-condition and their resulting cores by adjusting the value

of mPts.

Similar to the approach used before, we observe the influence of a change

of mPts on the two conditions. By definition the neighborhood set is un-

influenced by a change of mPts. However, it has a direct influence on
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the core-condition. For two values mPts1 < mPts2 the following inequality

holds:

|{ p ∈ X |mPts1 ≤ |Nε(p)| }| ≥ |{ p ∈ X |mPts2 ≤ |Nε(p)| }|
|coresε,mPts1 | ≥ |coresε,mPts2 |

(3.3)

As the previous inequality states, new cores can arise by lowering the mini-

mum amount of points in the neighborhood set. This can lead to an in-

crease in the number of clusters, adding cores to an existing cluster or

merging two clusters in the case that a shared border point becomes a

core point. Because the neighborhood set is uninfluenced by the parame-

ter change, existing clusters cannot increase in size without an increase of

cores in this cluster.

Figure 3.1 shows multiple clusterings of the same dataset with varying

parameter combinations. An adjustment of the mPts value is depicted

column-wise. An decrease of the mPts value leads to bigger clusters and

the development of new clusters. It has to be noted that any further de-

crease would lead to the sphere on the top being connected to the sur-

rounding sickle.

3.2 Hierarchical DBSCAN — HDBSCAN

Hierarchical algorithms can be divided into agglomerative and divisive

clustering algorithms. While the first type starts with a set of unclustered

objects and merges most similar pairs till only one group is remaining, di-

visive hierarchical clustering starts by assigning all elements to one cluster

and splits this iteratively.

In case of mPts = 1, DBSCAN acts similar to single linkage. This is due to

every point fulfilling the core-condition and being linked to points in its

ε-neighborhood. In this particular case the parameter ε is equal to the cut

height of an horizontal dendrogram cut. The following chapters will show,

how a similar principle can be adopted for other parameter combinations.

First, we will introduce the algorithm mPts-HDBSCAN in Subsection 3.2.1,

which iterates through all possible values of ε to create a dendrogram for a

fixed value of mPts. Subsection 3.2.2 will propose a similar approach for a

fixed value of ε.
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3.2.1 HDBSCAN for a fixed mPts value — mPts-HDBSCAN

The first algorithm we want to propose is mPts-HDBSCAN. It follows the

idea of iterating through all possible values for ε, while using a fixed value

of mPts. We will present two implementations of this algorithm. The first

one can directly be inferred by the recent description and the second one

follows a more sophisticated approach by changing the data-structure to

a graph containing information about pairwise reachability-distances.

DBSCAN does not describe a general estimate for the ε value. An itera-

tive method could fix an interval of ε values [εmi n ,εmax ] and calculate the

DBSCAN clustering for a number of values contained in this range. A dis-

advantage of this approach is the number of possible values for ε. Since

the spatial data is processed using a distance matrix, the number range

for valid cut-heights in the dendrogram is equal to the number range of

data points and their according distance metric. In general this is not lim-

ited to a countable set, which would need us to iterate through an infinite

number of ε values.

We can reduce the amount of possible ε values, if we focus on all radii,

which possibly change the clustering. Reasonable ε values can be directly

inferred from entries in the distance matrix. This limits the number range

to all values present in the matrix, which is N 2 for a dataset of size N .

Relating to the monotonicity of the neighborhood set, we first define the

minimal distance in which the size of the neighborhood set is greater or

equal to the specified minimum number of points. We will further refer to

this using the term core distance of a point and define it by:

Definition 9 (core distance) Let the core distance dcore,mPts (xi ) of a point

xi ∈ X be the distance to its mPts-nearest neighbor (ANKERST et al., 1999).

At each core distance it is possible that either existing clusters are merged,

clusters grow in size, or emerge from new core points. However, further

hierarchy levels in between two core distances di ,d j might possibly ex-

ist, since new points can get in range of an existing core with distance dk ,

whereat di < dk < d j .

From this observation it can be inferred that all pairwise distances of two

points have to be processed to ensure that each different DBSCAN hierar-
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Algorithm 1 mPts-HDBSCAN (Clustering-tree)

Input: mPts, Dist = pairwise distance matrix of X

C← {}
clust_hierarchy ← initialize_clustertree(C)
dist_list ← sort Dist in priority list as (r, c, d)

(row-index, column-index, distance)

for all (r, c, d) in dist_list do
add c to neighborhood of r
if r 6∈ cores and mPts ≤ |N (r )| then

add r to cores
end if
update_density_reachability(r)
Cdi st ← update_clustering(C)
if Cdi st 6= C then

clust_hierarchy.add_clustering(Cdi st )
C← Cdi st

end if
end for

return clust_hierarchy

chy level is included. The process can be stopped as soon as every point

is in the same cluster. The mPts-HDBSCAN algorithm is summarized in

Algorithm 1.

Further improvements of the proposed algorithm can result from using

other data structures to process the distance matrix and store the hier-

archy of DBSCAN clusterings. As the work of GOWER und ROSS (1969)

proposed, single linkage can be implemented using a minimum span-

ning tree. However, DBSCAN allows to choose a arbitrary value for mPts,

which directly influences the density-reachability of two points. For this

reason distances in the distance matrix have to be adjusted, since density-

reachability requires at least one of the points to be a core point. Following

distance transformation has to be applied to all pairwise distances and is

later referred to as reachability-distance:
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Definition 10 (reachability distance) Let the reachability distance of two

points xi , x j ∈ X be the distance, at which either xi is density reachable by

x j or the other way around.

dreach,mPts (xi , x j ) = max
{

min{dcore, mPts (xi ), dcore, mPts (x j )}, d(xi , x j )
}

(3.4)

Next, we define a reachability-graph by:

Definition 11 (reachability graph) Let the reachability graph be a com-

plete graph GmPts = (V ,E). Each point xi ∈ X is represented by a vertex

vi ∈ V and the weight of an edge (vi , v j ) ∈ E is equal to the reachability

distance of corresponding points w(vi , v j ) = dreach,mPts (xi , x j ).

We further filter edges of the graph using Kruskal’s algorithm for building

a minimum spanning tree KRUSKAL (1956). Each edge in the final tree rep-

resents a hierarchy level similar to the previous algorithm. A clustering

for the parameters mPts,ε can be obtained by removing all edges with a

weight greater than the ε threshold and calculating all connected compo-

nents of the graph. It has to be noted that for the latter step only nodes

with core distance equal or lower than ε are allowed to be expanded. Oth-

erwise, border points which have edges to two or more clusters would

merge those. Each core-distance can be added to the generated tree as

a self-edge (vi , vi ) ∈ E with a weight of w(vi , vi ) = dcore,mPts (vi ). The to-

tal number of edges in the enriched minimum spanning tree is 2n −1+b,

consisting of n −1 edges of the generated minimum spanning tree, n self-

edges and b edges of border points being part of multiple clusters. The

number of border points participating in multiple clusters can be seen as

marginal (b << n) in comparisons to the number of points in the dataset n.

Even though exceptions are theoretically possible, they are not practically

relevant. For this reason, the number of valid hierarchy levels generated

by this method can be estimated with 2n. The mPts-HDBSCAN based on

building a minimal spanning tree is summarized in Algorithm 2.

A similar approach was discussed in CAMPELLO et al. (2013). Nevertheless

their work excluded the handling of border points, For this reason they

changed the definition of reachability distance to:

dreach,mPts (xi , x j )′ = max{dcore,mPts (xi ), dcore,mPts (x j ), d(xi , x j )} (3.5)

Therefore, obtained clusters only contain core points and the result is dif-

ferent to the results of the algorithm discussed above.
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Algorithm 2 mPts-HDBSCAN (Minimum spanning tree)

Input: mPts, Dist = pairwise distance matrix of X,
Optional: maxε (default = ∞)

G ← empty_graph()
dcore,mPts ← calculate_core_distances(Dist, mPts)

for i from 1 to N do
for j from (i +1) to N do

if dreach,mPts (xi , x j ) < maxε then
G .add_edge(vi , v j , dreach,mPts (xi , x j ))

end if
end for

end for

T ← minimum_spanning_tree(G)
for i from 1 to N do

T .add_edge(vi , vi , dcore,mPts (vi ))
end for

return T

3.2.2 HDBSCAN for a fixed ε value — ε-HDBSCAN

Building a hierarchy based on a fixed value for mPts has been widely dis-

cussed in the previous section. Further on we will address necessary ad-

justments for an algorithm, which creates a hierarchy based on a fixed ε

value.

Since the value for ε is fixed the neighborhood sets of each node can be

computed beforehand. Our observations for the monotonicity of the core

condition (see Equation 3.3) suggests to iteratively decrease the value of

mPts for an agglomerative clustering. Starting point for the iterative pro-

cess is setting mPts to the biggest neighborhood set size in the dataset

and decreasing it stepwise until every node fulfills the core-condition. As

shown in Subsection 3.1.2 a further increase of any cluster is impossible.

The algorithm ε-HDBSCAN is summarized in Algorithm 3.
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Algorithm 3 ε-HDBSCAN (Clustering-tree)

Input: ε, Dist = pairwise distance matrix of X

C← {}
clust_hierarchy ← initialize_clustertree(C)
calculate neighborhood sets based on ε

mPts ← max(|Nε(p)|)

while |cores| < N do
new_core_nodes = { xi ∈ X | |Nε(xi )| = mPts }
add new_core_nodes to cores
update_density_reachability(new_core_nodes)
CmPts ← update_clustering(C)
if CmPts 6= C then

clust_hierarchy.add_clustering(CmPts )
C← CmPts

end if
mPts ← mPts −1

end while

return clust_hierarchy

In the previous discussed mPts-HDBSCAN algorithm the hierarchy levels

were bound to pairwise distances. In contrast to this, the set of hierarchy

levels for a fixed ε can be determined by:

{ |Nε(xi ) |xi ∈ X } (3.6)

As it was the case for mPts-HDBSCAN the ε-HDBSCAN algorithm can also

be implemented using a spanning tree. Since the value of mPts needs to be

decreased to increase the size of the cluster, either a maximum spanning

tree needs to be computed or the values have to be rescaled to match a

minimum spanning tree. The distance measure used for the computation

of a minimum spanning tree is defined by:

dreach,ε(i , j ) =
∞ , if d(xi , x j ) > ε

N −max{|Nε(xi )|, |Nε(x j )|} ,else
(3.7)

The pseudo code in Algorithm 4 summarizes the minimum spanning tree

based implementation of ε-HDBSCAN.
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Algorithm 4 ε-HDBSCAN (Minimum spanning tree)

Input: ε, Dist = pairwise distance matrix of X,
Optional: minmPts (default = 0)

G ← empty_graph()
Nε ← calculate_neighborhood_sets(Dist, ε)

for source from 1 to N do
if |Nε(source)| > minmPts then

for target in Nε(source) do
if target > source then

G.add_edge(source, target, N −max(|Nε(source)|, |Nε(target|)))
end if

end for
end if

end for

T ← maximum_spanning_tree(G)
for source from 1 to N do

T.add_self_edge(source, dcor e (source))
end for

return T

3.2.3 Complexity of proposed HDBSCAN algorithms

Provided implementations of proposed algorithms are far from optimal

complexity. This chapter is used to discuss the complexity of each pro-

cessing step. Table 3.1 lists the overall complexity of each algorithm.

Clustertree based implementation: The initialization of the clustertree

has a complexity of O(1). Calculating the neighborhood sets and the core

distance of each point takes O(N 2). Sorting the distance matrix using

heap-sort equals a complexity of O(N 2 log N ). Due to symmetry of the dis-

tance matrix the number of sorted entries can be halved by only sorting

the upper triangle matrix. Note that sorting entries of the distance matrix

is only necessary in mPts-HDBSCAN.

The complexity of updating density reachability and clustering labels de-

pends on the structure of the resulting hierarchy. Figure 3.2 depicts two
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a b c d

(a) Merging clusters of equal size
levels = log2(N ), updates per level = N/2

a b c d

(b) Adding single nodes
levels = N −1, updates per level = 1

Figure 3.2: Hierarchie structures and corresponding updates per level.

Table 3.1: Complexity of proposed clustering algorithms.

Algorithm Clustertree Minimum Spanning Tree

mPts-HDBSCAN O(N 2 log(N )) O(N 2 log(N ))
ε-HDBSCAN O(N 2) O(N 2 log(N ))

prime example structures. In the left subfigure the structure for a maxi-

mal number of hierarchy levels is depicted. Here, for each of the N levels

the label of one point has to be updated with a complexity of O(1). This

sums up to a complexity of O(N ). The right subfigure depicts a hierarchy

of equal merges with log2(N ) merges for a dataset of size N . Each level half

(N/2) of the points labels have to be updated. Adding the hierarchy level to

the clustertree has a complexity of O(1).

Overall the complexity of the clustertree based implementation of mPts-

HDBSCAN is bounded to the complexity of sorting the distance matrix

(O(N 2 log(N ))). ε-HDBSCAN does not require to sort the distance matrix

and has a overall complexity of O(N 2).

Minimum spanning tree based implementation: Calculating neighbor-

hood sets and core distances has a complexity of O(N 2). The calculation

of the minimum spanning tree has a complexity of O(N 2 log(N )) for com-

plete graphs. Reducing the number of edges in the reachability graph

by fixing a maximum edge weight can be used to shorten the minimum

spanning tree construction. Inserting remaining self edges has a cost of

O(N ). The total complexity of both minimum spanning tree variants is

dominated by the complexity of calculating the minimum spanning tree.

Therefore, the overall complexity is O(N 2log (N )).
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3.3 Processing the clustering hierarchy

The algorithms in the previous sections both produce a hierarchy of clus-

terings. A monotonic hierarchy can be depicted as a dendrogram or clus-

tertree (see Section 3.5 for further explanations). In the following we will

discuss multiple cutting strategies from KIM et al. (2012) and review those

in the context DBSCAN hierarchies. A simplified example dataset and cor-

responding hierarchy cuts are depicted in Figure 3.3.

Horizontal cut by height: Each level of the dendrogram represents one

parameter combination of (ε,mPts). Cutting the dendrogram at a spe-

cific height results in the DBSCAN clustering using said parameters.

The choice of the cut-height can be based on a minimum degree of

spatial separation. Since this information is not always known it can

be useful to choose the cut in between two consecutive clustering

levels with a large height difference. The height difference is an in-

dicator for the stability of the resulting clustering, since it describes

the required parameter change to yield a different result. However,

single outliers could lead to a maximal height difference by them-

selves, thus rendering this process ineffective. Figure 3.3a represents

a simplified dendrogram and a horizontal cut determined by maxi-

mal height difference of consecutive levels.

Horizontal cut by number of clusters: As it is the case for HAC algo-

rithms the estimated number of clusters is a valid criterion to fix

a horizontal cut level of the dendrogram. Different to dendrograms

produced by HAC, HDBSCAN dendrograms are not strictly mono-

tonic on the number of clusters depending on the height level. New

clusters can emerge or existing clusters can grow by increasing ε

or decreasing mPts. For this reason multiple levels of the hierarchy

are allowed to have the same number of clusters and therefore are

potential candidates for a clustering of k clusters. Choosing which

level to report can either be done by rating each clustering with an

internal validation measure or using the highest level, which fulfills

the k-cluster condition. The latter represents the maximal clustering

regarding the number of points assigned to k-clusters. Figure 3.3b

represents a simplified dendrogram and two cuts corresponding to

a clustering of two clusters.
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Non-horizontal cut by edge weight: The weight of a dendrogram edge

connecting cluster Ci and C j , such that Ci ⊂C j can be measured by

the height difference of the connected nodes. Experiments showed

that the distribution of edge weights Φ(w) seems to follow one or

multiple normal distributions. We can transfer the quantiles zα of a

standard normal distribution to specify a maximal weight for filter-

ing edges by:

weightmax = zα ·σ(Φ(w))+µ(Φ(w))

We insert cluster Ci to our final clustering hierarchy if its edge has a

weight larger than the weightmax . Finally, nodes are assigned to the

cluster of minimal height that contains them. Thus, the algorithm

returns clusters of differing density. An example is provided in Fig-

ure 3.3c, in which the largest edge was cut, producing one small clus-

ter contained in a supercluster.

(a) Horizontal cut by height (b) Horizontal cut by number of clusters

(c) Non-horizontal cut by edge weight (d) Hierarchical example dataset

Figure 3.3: Visualization of dendrogram cuts for the dataset in (d)
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3.4 Alternating Optimization for DBSCAN — aoDBSCAN

To further automatize the clustering process both hierarchical algorithms

of DBSCAN can be combined in an alternating optimization approach.

For this purpose an objective function on each clustering per hierarchy

level has to be defined, which will be mini- or maximized during the search

for an optimal parameter combination.

In each of the alternating optimization steps a hierarchical DBSCAN clus-

tering will be carried out to produce a clustering dendrogram for either a

fixed value of ε or mPts. This will return a clustering dendrogram, which

contains all possible clusterings depending on the second parameter.

Each horizontal cut implicates a valid parameter combination for which

the respective clustering occurs. Rating cuts by an objective function lets

us determine an appropriate value for the second parameter given the

fixed first parameter. In the algorithm we choose the parameter value

which yields the minimal or maximal value of the objective function. The

next step of the optimization process would be to fix the second parame-

ter at the optimal level found in the first step and initialize the respective

algorithm to find the next optimal value pair. The whole process is sum-

marized in Algorithm 5.

Algorithm 5 aoDBSCAN

Input: Dist = pairwise distance matrix of X

mPts ← random() or set by user
repeat

clust_hierarchy ← mPts-HDBSCAN (mPts, Dist)
ε = get_best_ε (clust_hierarchy)

clust_hierarchy ← ε-HDBSCAN (ε, Dist)
mPts = get_best_mPts(clust_hierarchy)

until convergence of mPts and ε

return mPts, ε

In certain scenarios it can be beneficial to swap the order of mPts-HDBSCAN

and ε-HDBSCAN. Since the initial estimation influences the found local

optimum we recommend to use either ε-HDBSCAN or mPts-HDBSCAN,
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Figure 3.4: Clustering change distributions depending on parameter mPts.

depending on which parameter is easier to estimate. In our experiments it

proved beneficial to start the optimization process using mPts-HDBSCAN,

since in average the number of hierarchy levels is smaller than for ε-

HDBSCAN.

Applying the objective function can be computationally costly if done for

each hierarchy level. For this reason, additional filtering of the hierarchy

levels can be applied for the clustering of large datasets. Figure 3.4 shows

the frequency of clustering changes depending on the parameter mPts for

the BlobsMoon dataset. As the graphs suggest the distribution of type of

changes is dependent on the used value of mPts. Higher values of mPts

lead to a decrease in border points ("new core leads to merge") and two

clusters becoming density reachable to each other ("cores become density

reachable"). Both types indicate larger changes of the underlying graph

structure. Experiments showed that the clustering levels before and after

the merge are good candidates for being rated by the objective function.

However, Figure 3.5 shows that levels chosen by the filtering process do

not contain all locally optimal hierarchy levels. For this reason, filtering

should only be used for time critical tasks. Later on, a local search around

the found optimum could be applied to find near optima.

3.4.1 Objective Functions

Alternating optimization handles the issue of finding an optimal pair of

parameters, but leaves the choice of a suitable objective function. In this

section we will review internal measures presented in Subsection 2.6.2 for

the use as objective function in aoDBSCAN.
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Figure 3.5: Horizontal cuts and their respective density-based silhouette score for
filtered and unfiltered reporting of the "Moons" dataset.

(Density) Silhouette coefficient

Silhouette coefficient as proposed by ROUSSEEUW (1987) is a compactness

based cluster validation measure. Experiments revealed that it can be

used for the optimization process as long as the intercluster distance is rel-

atively large in comparison to the average intracluster distance. However,

DBSCAN can produce clusters of arbitrary shape, which do not necessary

fulfill this condition. In the following we will discuss how standard silhou-

ette coefficient can be adjusted for connectedness-based clusters.

The inclusion of the average distance to each point (a(i )) in the cluster

leads the silhouette score to favor convex clusters. This property suits well

for clustering algorithms searching for convex shapes, but limits the area

of application for the DBSCAN algorithm.

Referring to the cluster attributes summarized in Section 2.1 the silhou-

ette coefficient tries to optimize for compactness and spatial-separation.

In the following we propose a density-based interpretation of the silhou-

ette score, which changes the definition of a(i ). Aiming for measuring

the difference of connectedness and spatial separation, a straightforward

method would be to estimate the average density of the cluster and com-

pare it to the minimal distance to another cluster. A natural way for the

density estimation of a DBSCAN cluster would be to take the average

necessary distance of all pairwise points of a cluster such that those are

density-connected.
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Let GmPts be the reachability graph and GmPts (Ci ) the subgraph of GmPts

only containing points assigned to cluster Ci . We define the cost of a path

(cost(p)) to be the largest edge weight on the path.

Let a(i ) be:

a(i ) = 1

nCi −1

∑
j∈Ci ; i 6= j

argmin
p

(cost(p(i , j ))) (3.8)

Since this formula is too complex to evaluate for every hierarchy level, we

suggest to use the ε value, for which the cluster Ci first emerged, which

is equal to the largest edge-weight of GmPts (Ci ). This results in an upper-

bound ā(i ) ≥ a(i ), which is included in the density based calculation of

the silhouette score. Based on the changed calculation of the silhouette

score the silhouette coefficient of a cluster and a clustering are similar to

the Equations 2.15 and 2.16. We later refer to the density based silhouette

score of a clustering by sd
C .

ā(i ) = argmin
ε

(for Ci to exist)

= max({weight(e),e ∈ E |GmPts (Ci ) = (V ,E) }) (3.9)

sd (i ) = b(i )− ā(i )

max{ā(i ),b(i )}
; sd

Ci
= 1

nCi

∑
o∈Ci

sd (o); sd
C = 1

nC

∑
Ci∈C

sd
Ci

(3.10)

In cases where all clusters are disjunct sets, the value of b(i ) will always

be larger than the value of āi . As a result the density based silhouette co-

efficient of a clustering of disjunct sets will be in the range of [0,1]. In

case border points are participating in in multiple clusters the value of b(i )

can be smaller than ā(i ). Since the denominator of the silhouette score is

always larger than zero, the presence of such border points changes the

range of a clusters density-based silhouette score to (−1,1]. This is espe-

cially a problem because of border points influencing multiple clusters.

Because of this we suggest to remove border points from the calculation

of the density-based silhouette coefficient.

The evaluation chapter will compare the performance of the silhouette co-

efficient and its density based interpretation. We will use the abbreviation

sC for results based on the original silhouette coefficient and sd
C for the den-

sity based interpretation of silhouette coefficient, where a(i) is replaced by

ā(i ) and border points are excluded from the calculation.
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Dunn’s index

As the study by AGGARWAL und REDDY (2013) suggests the validation mea-

sure proposed by Dunn is highly impacted by subclusters. In their experi-

ments Dunn’s index favored subclusters to be grouped together in one su-

percluster. While this can be a desired characteristic for other algorithms

the application in our hierarchical scenario highly limits the range of clus-

ter structures to be detected. It is to be expected that lower levels of the hi-

erarchy will be rated generally lower than higher hierarchy levels. For this

reason we omit Dunn’s index from further evaluation as objective function

for aoDBSCAN.

Clustering Validation Index based on Nearest Neighbor

While CVNN focuses on connectedness based clusters it seems unsuit-

able for the comparison of clusterings generated by DBSCAN. Looking at

the separation (Sep) and compactness (Com) component we can see that

Sep weights separation by the share of nearest neighbors assigned to other

clusters than the point currently looked on. In case of DBSCAN this value

converges to zero, because only a low number of border points participat-

ing in multiple cluster can be expected. For this reason, only the compact-

ness component of CVNN influences the rating of a clustering. Since we

already decided to use standard silhouette coefficient, which optimizes for

compactness as well, we will omit CVNN from further evaluation as an ob-

jective function for aoDBSCAN. Therefore, we will not further evaluate it

in Chapter 4.

Edge correlation

Edge correlation sticks out of the previous functions by using the whole

similarity matrix as basis for the rating. The comparison of the labeling

and the similarity tends to favor compact clusterings, because those better

map block matrices. We will test the capabilities of using edge correlation

as objective function criterion in our evaluation. It will show how intense

compact cluster structures will be favored over connectedness based clus-

ter shapes.
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3.5 Visualization

To a large degree the practicability of a clustering algorithm is determined

by suitable visualizations. While hierarchies generated by HDBSCAN con-

tain a vast amount of information about the dataset and its structure, they

can be difficult to interpret without appropriate visualization techniques.

The following sections will review visualization techniques for HDBSCAN

and aoDBSCAN to fully leverage both algorithms.

3.5.1 Dendrograms and clustertrees

Results of hierarchical methods are typically displayed using dendrograms.

Links in the dendrogram mark merges of connected clusters. The horizon-

tal height in which a merge occurs is equal to the distance of the affected

clusters.

Ordinary dendrograms assume each node to be in a separate cluster at

zero height. While this is true for HAC algorithms and various linkage cri-

teria it does not transfer to DBSCAN using mPts values higher than two.

Here, a cluster is first added to the hierarchy when the core-condition is

fulfilled. Node pairs becoming part of each others neighborhood sets are

not marked in the hierarchy if the core-condition is not fulfilled by at least

one of them. For better interpretability we chose a clustertree to be an

appropriate visualization method for hierarchies produced by HDBSCAN.

Clusters changed due to an increase of the iterated parameter are marked

using a new node in the hierarchy. As in the dendrogram subset relations

are designated using edges between corresponding nodes. Later chapters

will use the terms dendrogram and clustertree, when referring to hierar-

chies produced by HDBSCAN.

To further ease the interpretability of clusters in the clustertree, we add

additional information to each node in the tree. A pie chart visualization

containing information about the type of points in the cluster and their

quantity is depicted in Figure 3.6. The outer ring can be added, by cal-

culating objective function score for each cluster. However, this was not

implemented yet due to the higher computational effort before drawing

the hierarchy.



46 CHAPTER 3. HIERARCHICAL EXTENSIONS OF DBSCAN
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Figure 3.6: Pie chart visualization for nodes of a clustertree.

Figure 3.7: Visualization of a clustertree.

Figure 3.7 depicts the final version of a clustertree used for the visualiza-

tion of HDBSCAN.

3.5.2 Interactive visualizations

DBSCAN parameters are easily interpretable in low dimensional cluster-

ing scenarios. Nevertheless, the choice of an appropriate ε value for high

dimensional datasets can be complicated. Figure 3.8 depicts an interac-

tive visualization of the parameter space. The left plot is a binned repre-

sentation of the parameter space. Each cell contains the clustering of the

according parameter combination. A cell’s color is determined by the ob-

jective function score of the corresponding clustering. By clicking on a cell

the scatter plot on the right displays the associated DBSCAN clustering.

The gridded visualization is fairly limited, due to the choice of the grid-size

and a range of the parameter space to be explored. Consecutive grid cells

do not necessary contain diverging clusterings of the dataset. For exam-

ple, Figure 3.8 contains a large blue area on the right half of the parameter
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Figure 3.8: Interactive visualization of the parameter space and the density-based
silhouette score to respective parameter combinations. A click on the gridded plot
on the left updates the scatter plot on the right regarding the chosen parameter
combination.

space. Each of these cells contain the same clustering in which only one

large cluster exists.

Hierarchies generated by HDBSCAN already represent a condensed ver-

sion of the parameter space, in which levels of differing clusterings are

marked by new nodes. We provide an interactive version for horizontal

and non-horizontal cuts for a user guided exploration of the parameter

space. Figure 3.9 depicts a clustertree and a corresponding horizontal cut

adjustable by the vertical slider on the left. The scatter plot on the right up-

dates every time a new cut-height was chosen by the user. For interactive

versions of the non-horizontal cuts by edge weight we chose to use a color

scale for the visualization of edge weights. Figure 3.10 pictures the inter-

active version of non-horizontal cuts for HDBSCAN. As it was the case for

horizontal cuts, a vertical slider on the left determines the maximal weight

of an edge. The scatter-plot on the right updated every time a new cut was

chosen by the user.

With aoDBSCAN we proposed a method which automatically explores the

parameter space with the help of an objective function. Usually, the only

feedback the user receives is the final state of the optimization process.

However, it can be of interest how the result was obtained. Figure 3.11

depicts the learning process of the algorithm and the final result on the

right side of the plot. Comparing this for multiple initializations can give

insights in characteristics of the used objective function.
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Figure 3.9: Interactive visualization for horizontal dendrogram cuts.

Figure 3.10: Interactive visualization for non-horizontal cuts by edge weight.
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Figure 3.11: Learning process of aoDBSCAN for the depicted dataset on the right.

Figure 3.12: Interactive alternating optimization of DBSCAN. left: ε-HDBSCAN
dendrogram; middle: scatter plot of the clustering for the current parameter
combination; right: mPts-HDBSCAN dendrogram.

It can be of interest to execute the aoDBSCAN process by hand. For this

purpose we created an interactive version of aoDBSCAN depicted in Fig-

ure 3.12. The left side contains an interactive hierarchy of ε-HDBSCAN,

whereas the right side contains mPts-HDBSCAN. Each hierarchy can be

cut horizontal by choosing a cut-height at the corresponding sliders on

the side of both plots. Every time a cut-height is changed the scatter plot

in the middle is updated for the corresponding value combination. Hierar-

chies can be recalculated based on the current cut-height by clicking one

of the buttons below the scatter plot.
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3.6 Summary

In the course of this chapter we proposed two hierarchical extensions

for DBSCAN. Both use monotonic observations of the neighborhood set

and the core-condition for efficient computation of the full hierarchy.

However, the clustertree-based implementations still maintain a compu-

tational overhead by first sorting and then traversing the entries of the

distance matrix. The concept of reachability distance and the correspond-

ing reachability graph were introduced to further optimize the hierarchy

generation process. This is based on minimum spanning tree implemen-

tation of HDBSCAN, which is computational more efficient and stores all

necessary information about the clustering hierarchies.

Further processing of the hierarchy was discussed for creating flat or com-

pressed hierarchical clusterings. While the first one was used to automa-

tize the clustering process by implementing an alternating optimization

approach, the second introduces a novel way for the extraction of clusters

of differing density. AoDBSCAN eliminates the choice of both DBSCAN pa-

rameters and replaces it by the optimization of an internal validation cri-

terion. For this reason, we reviewed multiple internal validation measures

in the context of being used as objective function for aoDBSCAN. While

we could cancel out Dunn’s index and the CVNN score, we also proposed

a density-based interpretation of the silhouette score and selected the sil-

houette coefficient, its density-based interpretation, and edge correlation

as appropriate candidates.

Since we were already able to remove the parameter dependency from DB-

SCAN, we also wanted to improve the usability of proposed algorithms.

For this reason, we introduced interactive visualizations, which help the

user to get a grasp of the parameter space and information contained in

returned hierarchies. Plots of the learning process and an interactive ver-

sion of aoDBSCAN support the user throughout the clustering analysis

and help to understand behavior and outcome of the applied clustering al-

gorithm. These interactive elements help users, whom are unfamiliar with

the topic, to fully utilize the capabilities of discussed clustering methods.

The following evaluation chapter will compare the performance of pro-

posed algorithms with common clustering algorithms, while assessing the

capabilities of selected objective functions.
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Evaluation

4.1 Experiment setup

The following evaluation will compare clustering results of multiple algo-

rithms in context of various cluster scenarios. Included algorithms and

their used configuration are:

K-means: The k-means algorithm was used to generate a flat partition of

k clusters. Parameter k was set to the true number of clusters in each

dataset. To avoid the initialization problem of the cluster centers,

each dataset was clustered 100 times and only the result with mini-

mal sum of squared errors was reported.

Fuzzy-c-means: For fuzzy-c-means we used the same configuration as for

the k-means algorithm. Fuzzifier w was set to 2.

HAC single linkage: The single linkage criterion was used to build a full

clustering hierarchy of the dataset using hierarchical agglomerative

clustering. A flat clustering was obtained using a horizontal dendro-

gram cut for k clusters, such that k is the true number of clusters.

HAC complete linkage: For the complete linkage criterion we used the

same approach as for single linkage.

HAC wards minimum variance: The same applies to the wards mini-

mum variance criterion.

OPTICS: Our evaluation of the OPTICS algorithm is based on the param-

eter settings mPts = 4 and 20 values of ε equidistantly distributed

on a range of [0.1, 1.00]. Before applying the OPTICS algorithm the

dataset was rescaled to the range of [0.1, 1.00] to match the iterated

51
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ε values. The result with the best density based silhouette coefficient

was reported.

CLIQUE: The CLIQUE algorithm was initialized several times using grid-

sizes of (10×10), (15×15), (20×20) and (25×25). Results reported

here are based on a density threshold of 4, which averaged as the best

threshold value. The clustering with the best modified silhouette co-

efficient is recorded in the following evaluations.

HDBSCAN (edge quantile): mPts-HDBSCAN with mPts = 4 was used to

produce a hierarchy of clusters, which was postprocessed using

α ∈ {0.1,0.075,0.05,0.025,0.01,0.005} for an estimate of the non-

horizontal cut length. Edges (Ci ,C j ), for which Ci ⊂ C j , with higher

length than the estimated cut length were cut and Ci was added to

the reduced hierarchy. Nodes were assigned to the smallest cluster of

the final hierarchy. Clustering results were rated using density-based

silhouette coefficient and the best result was reported.

aoDBSCAN (sd
C ): The alternating optimization was initialized by first us-

ing mPts-HDBSCAN with an initial value of mPts = 5. Each hierarchy

level was rated using density-based silhouette coefficient to find an

optimal horizontal cut of the hierarchy. The maximal number of iter-

ations was set to 10. Plots of the resulting clustering use the heading

"aoDBSCAN (modsil)".

aoDBSCAN (sC): The same approach as in aoDBSCAN (sd
C ) was applied,

with the change of using silhouette coefficient as rating criterion for

the levels of the hierarchy. Plots of the resulting clustering use the

heading "aoDBSCAN (sil)".

aoDBSCAN (ρC): The same applies to aoDBSCAN (ρC), with the change of

using edge correlation as optimization criterion. Plots of the result-

ing clustering use the heading "aoDBSCAN (edgecore)".

Implementations of k-means and HAC algorithms were taken from the

Python packages SciPy (JONES et al., 2001) and Scikit-learn (PEDREGOSA

et al., 2011). For the fuzzy-c-means algorithm we used an implementation

from the sci-kit-fuzzy package (WARNER et al., 2015). Additionally, an pub-

licly available OPTICS Python implementation was provided by GRIGSBY
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(2013). Remaining algorithms were self-implemented and are based on

the descriptions provided in previous chapters.

The external validation measures entropy (E), purity (P ), F-measure (F ),

and V-measure (V ) were recorded for each clustering result and are shown

in the corresponding table for each dataset. The best results of each col-

umn were written in bold and worst values were highlighted using italics.

Note that in contrast to the other measures entropy has to be minimized

for an optimal result.

4.2 Dataset results

Results will be discussed on the basis of the dataset characteristics in each

scenario. Available datasets were divided into two groups. The first fo-

cuses on the clustering algorithms ability to find compact clusters and the

second focuses on clusters based on varying connectedness. Both groups

contain datasets with varying spatial separation of the clusters to test the

algorithms sensitivity to spatial separation.

In the following each dataset will be shortly discussed and external vali-

dation results will be presented in a table. The clustering results of pro-

posed algorithms are visualized in each section. A visualization of each

algorithms clustering result per dataset can be found in Appendix A. In

Section 4.3 we summarize our results of both categories and compare the

overall accuracy of proposed algorithms.
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4.2.1 Cluster scenarios based on compactness

R15

The R15 dataset contains 15 spherical shaped clusters with varying de-

grees of spatial separation. Table 4.1 summarizes the results of each clus-

tering process. An almost correct clustering was achieved using k-means,

fuzzy-c-means, complete linkage, and wards minimum variance. Few mis-

assignments in the inner clusters are recorded, which is due to the missing

spatial separation of few cluster pairs.

Single linkage assigns few points to singleton clusters. This is due to the

larger distance of single noise points to the cluster they belong to. The

behavior could have been avoided by fixing a minimum cluster size. In

this case respective points would either be marked as noise or assigned to

another cluster.

Proposed DBSCAN variants and common algorithms as OPTICS and

CLIQUE detect all spatially well separated clusters of the outer circle, but

perform bad in the clustering of the inner spheres. All 6 algorithms assign

the 8 clusters in the middle to one large cluster. Therefore, purity values

of those algorithms are competitive with the partitioning and HAC algo-

rithm, but V and F -scores are much lower. The results of the proposed

algorithms are depicted in Figure 4.1. A visualization of all clustering

algorithms’ results can be found at Figure A.1 in the appendix.

It could be argued that the inner circles form a region of higher density

than the outer circles or their regions are strongly overlapping. A correct

partition of the dataset could be achieved by fixing a high value for mPts.

This would alter the reachability distance of each point and increase the

reachability distance differences between points near to a clusters center

and points at the outer border of a cluster.
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Table 4.1: Evaluation results for the "R15" dataset.

Algorithm E P V F

Mini-Batch-K-Means 0.02 1.00 1.00 0.99
Fuzzy-C-Means 0.02 1.00 1.00 0.99
Single Linkage 0.08 0.99 0.76 0.88
Complete Linkage 0.06 0.99 0.99 0.98
Wards Minimum Variance 0.05 0.99 0.99 0.99
OPTICS 0.00 1.00 0.59 0.74
CLIQUE 0.25 0.94 0.43 0.58
HDBSCAN(edge quantile) 0.00 1.00 0.59 0.74
aoDBSCAN(sd

C ) 0.00 1.00 0.59 0.74
aoDBSCAN(sC) 0.00 1.00 0.59 0.74
aoDBSCAN(ρC) 0.00 1.00 0.59 0.74

Figure 4.1: Clustering results for the dataset "R15" of proposed hierarchical
DBSCAN variants.
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Aggregation

The second dataset named Aggregation contains multiple ellipsoid clus-

ters and one broad sickle in the top right corner. Two pairs of clusters are

connected through a short bridge of points. Table 4.2 contains our experi-

mental results for the Aggregation dataset.

Best clustering results are achieved by density-based algorithms. However,

none of them correctly split both connected cluster pairs. For this rea-

son single linkage, OPTICS, HDBSCAN (edge quantile), and aoDBSCAN us-

ing modified silhouette coefficient or edge correlation achieve a purity of

P = 1.00, and V-measure or F-measure scores of about V ≈ 0.88,F ≈ 0.88.

The alternating optimization process using silhouette coefficient results

in an overestimate of the parameter ε. Therefore, the clusters on the left

side of the dataset are merged, which results in the worst score for V and

F . Figure 4.2 depicts clustering results obtained by proposed algorithms.

Partitioning algorithms such as k-means and fuzzy-c-means perform well

for clusters of equal size and spatially well separated clusters. While the

two connected spheres on the right are separated correctly, the connected

big and small sphere on the lower right corner is not separated due to dif-

ferent cluster sizes.

Complete linkage and wards minimum variance perform well in the split

of the connected clusters on the right. Nonetheless, both do not split the

clusters on the lower left corner correctly. On the contrary, CLIQUE cor-

rectly separates clusters on the left, except a few outliers at the clusters

borders. Results of all clustering algorithms are visualized in Figure A.2.
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Table 4.2: Evaluation results for the "Aggregation" dataset.

Algorithm E P V F

Mini-Batch-K-Means 1.26 0.83 0.85 0.89
Fuzzy-C-Means 0.91 0.68 0.74 0.76
Single Linkage 1.65 1.00 0.89 0.88
Complete Linkage 1.31 0.84 0.85 0.91
Wards Minimum Variance 1.36 0.88 0.87 0.90
OPTICS 1.69 1.00 0.89 0.89
CLIQUE 1.45 0.96 0.66 0.51
HDBSCAN(edge quantile) 1.69 1.00 0.89 0.89
aoDBSCAN(sd

C ) 1.63 0.99 0.88 0.88
aoDBSCAN(sC) 1.59 0.98 0.93 0.91
aoDBSCAN(ρC) 1.69 1.00 0.89 0.89

Figure 4.2: Clustering results for the dataset "Aggregation" of proposed hierarchi-
cal DBSCAN variants.
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Blobs-1000D

The third dataset in the compactness category tests the clustering algo-

rithms ability to cope with a higher number of dimensions. The dataset

Blobs-1000D consists of 3 spherical shaped clusters of each 100 points in

an 1000 dimensional space. It was expected that the curse of dimensional-

ity already leads to problems in distinguishing the clusters, however only

CLIQUE and OPTICS perform bad in this scenario. This could be due to

the experimental setup and the configuration of the algorithms. Probably

neither a valid grid-size nor an appropriate ε-value was used, such that the

clustering of both algorithms fail to distinguish the groups.

Remaining algorithms perform well and result in the correct clustering.

The visualizations in Figure A.3 and Figure 4.3 show a scatter-plot of the

first two dimensions. Table 4.3 summarizes the recorded validation mea-

sures for all algorithms.
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Table 4.3: Evaluation results for the "Blobs-1000D" dataset.

Algorithm E P V F

Mini-Batch-K-Means 0.03 1.00 1.00 1.00
Fuzzy-C-Means 0.03 1.00 1.00 1.00
Single Linkage 0.03 1.00 1.00 1.00
Complete Linkage 0.03 1.00 1.00 1.00
Wards Minimum Variance 0.03 1.00 1.00 1.00
OPTICS 0.03 1.00 0.51 0.00
CLIQUE 0.17 0.97 0.74 0.60
HDBSCAN(edge quantile) 0.03 1.00 1.00 1.00
aoDBSCAN(sd

C ) 0.09 0.99 0.99 0.98
aoDBSCAN(sC) 0.09 0.99 0.99 0.98
aoDBSCAN(ρC) 0.09 0.99 0.99 0.98

Figure 4.3: Clustering results for the dataset "Blobs-1000D" of proposed hierar-
chical DBSCAN variants.
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4.2.2 Cluster scenarios based on connectedness

Moons

The Moons dataset is the first representative of clusters based on connect-

edness. It consists of two interlocked crescent shaped clusters with a small

degree of noise. In our evaluation single linkage and aoDBSCAN using sil-

houette coefficient perform best. Both yield a perfect clustering according

to the true partition of the dataset.

Other aoDBSCAN variants result in a nearly correct clustering. All exclude

few noise points, which could be argued to be outliers. Figure 4.4 shows

the clustering result of proposed algorithms.

Surprisingly, OPTICS and CLIQUE do not return a correct clustering. Both

clustering results show two gaps in the lower sphere. This could be due

to the preset mPts value of 4 and no check of an appropriate ε or grid-size.

Possibly, the number of points per cell at the ends of the bottom sickle is

to small for the fixed threshold of 4. Changing the location of the grid or

lowering the threshold could improve the clustering result.

The remaining algorithms k-means, fuzzy-c-means, complete linkage,

and wards minimum variance do not reflect the correct shape of both

clusters. While k-means and fuzzy-c-means are forced to find a linear

separation of the dataset, the hierarchical algorithms tend to produce

spherical shaped clusters. Both strategies are not sufficient to result in a

correct clustering. Their respective clustering results can be found in Fig-

ure A.4 in the appendix. External validation measures of each clustering

result are recorded in Table 4.4.
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Table 4.4: Evaluation results for the "Moons" dataset.

Algorithm E P V F

Mini-Batch-K-Means 0.81 0.75 0.75 0.19
Fuzzy-C-Means 0.81 0.75 0.75 0.19
Single Linkage 0.00 1.00 1.00 1.00
Complete Linkage 0.77 0.76 0.76 0.22
Wards Minimum Variance 0.38 0.89 0.89 0.60
OPTICS 0.49 0.80 0.81 0.42
CLIQUE 1.02 0.67 0.70 0.58
HDBSCAN(edge quantile) 0.09 0.99 0.99 0.96
aoDBSCAN(sd

C ) 0.15 0.98 0.97 0.92
aoDBSCAN(sC) 0.00 1.00 1.00 1.00
aoDBSCAN(ρC) 1.18 0.65 0.64 0.15

Figure 4.4: Clustering results for the dataset "Moons" of proposed hierarchical
DBSCAN variants.
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BlobsMoon

The BlobsMoon dataset consists of two spheres of different size and den-

sity. The upper sphere is encased by a semicircle shaped cluster. All aoDB-

SCAN variants as well as HAC using single linkage result in a correct clus-

tering.

The remaining density based algorithms merge both clusters on the top to

one bigger cluster. Clique additionally separates few points at the border

of the cluster into smaller clusters. It is expected that this behavior can be

avoided with another localization of the underlying grid or by changing

the density threshold. Examples for the correct classification of the aoDB-

SCAN variants and mistakes made by HDBSCAN can be seen in Figure 4.5.

K-means and fuzzy-c-means have the lowest purity values. This is due

to a vertical split of both upper clusters. Wards minimum variance and

complete linkage result in similar mistakes, but to a lower extent than both

partitioning algorithms.

Results of used clustering algorithms can be found at Figure A.5. Table 4.5

contains corresponding evaluation measures.
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Table 4.5: Evaluation results for the "BlobsMoon" dataset.

Algorithm E P V F

Mini-Batch-K-Means 0.87 0.69 0.70 0.52
Fuzzy-C-Means 0.82 0.69 0.69 0.55
Single Linkage 0.11 1.00 1.00 1.00
Complete Linkage 0.38 0.93 0.76 0.71
Wards Minimum Variance 0.72 0.76 0.72 0.61
OPTICS 0.11 1.00 0.83 0.75
CLIQUE 0.59 0.88 0.73 0.62
HDBSCAN(edge quantile) 0.11 1.00 0.83 0.75
aoDBSCAN(sd

C ) 0.11 1.00 1.00 1.00
aoDBSCAN(sC) 0.11 1.00 1.00 1.00
aoDBSCAN(ρC) 0.11 1.00 1.00 1.00

Figure 4.5: Clustering results for the dataset "BlobsMoon" of proposed hierarchi-
cal DBSCAN variants.
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Spiral

The Spiral dataset consists of three entwined spirals with slightly decreas-

ing density at the outer ends. This dataset is a typical counterexample

for cluster oriented on compactness. As the result shows, algorithms like

single linkage perform very well on such kinds of datasets, while k-means

and fuzzy-c-means completely fail to capture the clusters structure. Both

partitioning algorithms result in a F-measure of about F = 0.00.

As it was already stated earlier, DBSCAN is equal to single linkage for

mPts = 1. The basic initialization of mPts = 5 would not be sufficient to

cluster the dataset correctly using DBSCAN. However, the alternating op-

timization process for density-based and standard silhouette coefficient

result in an appropriate parameter combination for DBSCAN. Table 4.6

contains recorded values of the evaluation process. In contrast to those,

edge correlation does not lead to a suitable parameter combination and

results in an F-measure score of F = 0.04. HDBSCAN has a high accu-

racy in the clustering process but omits the last point of each spiral. This

can be seen in Figure 4.6, which depicts clustering results of proposed

algorithms.

The CLIQUE algorithm performs especially bad regarding the purity and

entropy measures. This is due to the thin spirals diagonally crossing the

grid cells, while the used implementation only considered adjacent verti-

cal and horizontal cells for the connection of clusters.

For a detailed comparison clustering results of all used clustering algo-

rithms are depicted in Figure A.6.
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Table 4.6: Evaluation results for the "Spiral" dataset.

Algorithm E P V F

Mini-Batch-K-Means 1.54 0.38 0.35 0.00
Fuzzy-C-Means 1.54 0.35 0.34 0.00
Single Linkage 0.04 1.00 1.00 1.00
Complete Linkage 1.51 0.43 0.39 0.01
Wards Minimum Variance 0.91 0.71 0.63 0.27
OPTICS 0.04 1.00 1.00 1.00
CLIQUE 1.84 0.42 0.36 0.08
HDBSCAN(edge quantile) 0.04 0.99 0.99 0.98
aoDBSCAN(sd

C ) 0.04 1.00 1.00 1.00
aoDBSCAN(sC) 0.04 1.00 1.00 1.00
aoDBSCAN(ρC) 0.68 0.78 0.51 0.04

Figure 4.6: Clustering results for the dataset "Spiral" of proposed hierarchical
DBSCAN variants.
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Compound

The Compound dataset is used to check for the algorithms capabilities

of adapting to different cluster shapes and densities. It consists of two

gaussian distributed clusters on the top left blending into each other, one

dense cluster on the right encompassed in a sparse area, and two clusters

on the lower left including one sphere surrounded by a spatially separated

circular cluster.

Density-based algorithms as DBSCAN, CLIQUE and OPTICS are generally

not capable of returning clusters of varying density. The alternating opti-

mization approach fails to extract most clusters with all three optimization

criteria. Their high purity values are a result of merging clusters on the left

and right, due to the large gap between those. OPTICS and Clique further

divide the groups, but overall could not divide both various cluster pairs.

Both partitioning algorithms perform well for the gaussian clusters on the

top left corner. However, they fail to capture the cluster structure of re-

maining clusters, since those are not compact in shape.

The clustering using single linkage fails, due to the sparse cluster on the

right. Single Nodes are isolated in the hierarchy, which is a result of

the well known chaining effect of single linkage. Complete linkage and

wards minimum variance suffer from the same problem as the algorithms

k-means and fuzzy-c-means.

HDBSCAN outperformed previous clustering algorithms by finding a

nearly perfect non-horizontal cut of the hierarchy. As it can be seen in

Table 4.7 HDBSCAN performs best in the V-measure and the F-measure

with scores of approximately 0.99. Just a single point on the top-right

corner is excluded from the surrounding points. Figure 4.7 depicts the

clustering result of HDBSCAN and aoDBSCAN variants. A full comparison

of clustering results can be found in Figure A.7.
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Table 4.7: Evaluation results for the "Compound" dataset.

Algorithm E P V F

Mini-Batch-K-Means 0.05 0.68 0.72 0.72
Fuzzy-C-Means 0.08 0.66 0.70 0.71
Single Linkage 0.69 0.99 0.84 0.80
Complete Linkage 0.50 0.91 0.84 0.81
Wards Minimum Variance 0.01 0.70 0.71 0.73
OPTICS 0.74 1.00 0.84 0.81
CLIQUE 0.45 0.93 0.88 0.77
HDBSCAN(edge quantile) 0.68 0.99 0.99 0.98
aoDBSCAN(sd

C ) 0.74 1.00 0.77 0.59
aoDBSCAN(sC) 0.74 1.00 0.77 0.59
aoDBSCAN(ρC) 0.74 1.00 0.77 0.59

Figure 4.7: Clustering results for the dataset "Compound" of proposed hierarchi-
cal DBSCAN variants.
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Flame

The Flame dataset contains two clusters connected by a sparse area. Two

outliers were added to the upper left corner.

The alternating optimization approaches using standard and density-

based silhouette coefficient show to be highly influenced by the two out-

liers. The large gap between the two outliers and the remaining points

result in a higher minimal distance between two clusters than the division

of both clusters through the sparse area. The edge quantile cut of HDB-

SCAN suffers from the same problem. CLIQUE correctly identifies the

mass centers of both clusters, but excludes sparser areas at the clusters

borders. Same behavior could probably be achieved for the edge quan-

tile cut by increasing mPts. Clustering results of proposed algorithms are

depicted in Figure 4.8.

Neither k-means nor fuzzy-c-means are able to find a linear separation of

both clusters. However, both chose a cut through the sparse area, since

the mass centers of the remaining clusters are in the middle of the desired

clusters. This approach results in the best values regarding the V -measure.

Similar problems could be observed for complete linkage and wards mini-

mum variance.

Figure A.8 shows a full comparison of clustering results. Corresponding

scores per evaluation measure are recorded in Table 4.8.
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Table 4.8: Evaluation results for the "Flame" dataset.

Algorithm E P V F

Mini-Batch-K-Means 0.02 0.85 0.85 0.48
Fuzzy-C-Means 0.05 0.85 0.85 0.44
Single Linkage 0.46 0.99 0.78 0.02
Complete Linkage 0.00 0.86 0.63 0.07
Wards Minimum Variance 0.11 0.72 0.72 0.33
OPTICS 0.46 0.99 0.78 0.02
CLIQUE 0.80 0.52 0.55 0.38
HDBSCAN(edge quantile) 0.45 0.99 0.78 0.02
aoDBSCAN(sd

C ) 0.46 0.99 0.78 0.02
aoDBSCAN(sC) 0.46 0.99 0.78 0.02
aoDBSCAN(ρC) 0.22 0.79 0.62 0.00

Figure 4.8: Clustering results for the dataset "Flame" of proposed hierarchical
DBSCAN variants.
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Moons-DifDense

As the Compound dataset the dataset Moons-DifDense consists of two

clusters of differing density. Clusters are of similar shape and position-

ing as in the Moons dataset. Since only two density levels are included,

it is also possible to rate the sparse cluster as noise. The influence of the

changes can be observed in Table 4.9.

The performance of k-means and fuzzy-c-means is the same compared to

the Moons dataset with equal density levels. Complete linkage and wards

minimum variance show no big changes as well.

In contrast to partitioning algorithms, density-based methods and single

linkage are largely affected by the change. HDBSCAN and OPTICS per-

form well, whereas all aoDBSCAN variants fail to capture the desired clus-

ter structure. HDBSCAN chose to include three hierarchy levels and one

noise point. The same noise point is also excluded using aoDBSCAN. Ex-

cluding the noise point could be attributed to the used internal validation

measure for HDBSCAN. THe clustering results of proposed algorithm are

depicted in Figure 4.9. For a full comparison of clustering results see Fig-

ure A.9 in the appendix.
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Table 4.9: Evaluation results for the "Moons-DifDense" dataset.

Algorithm E P V F

Mini-Batch-K-Means 1.09 0.76 0.74 0.34
Fuzzy-C-Means 1.07 0.77 0.76 0.35
Single Linkage 0.61 0.93 0.85 0.25
Complete Linkage 0.58 0.95 0.95 0.70
Wards Minimum Variance 0.91 0.86 0.85 0.51
OPTICS 0.39 1.00 1.00 1.00
CLIQUE 0.85 0.84 0.84 0.22
HDBSCAN(edge quantile) 0.54 0.98 0.97 0.90
aoDBSCAN(sd

C ) 0.41 1.00 0.85 0.01
aoDBSCAN(sC) 0.72 0.89 0.90 0.44
aoDBSCAN(ρC) 0.69 0.89 0.90 0.46

Figure 4.9: Clustering results for the dataset "Moons-DifDense" of proposed
hierarchical DBSCAN variants.
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4.3 Summary

The performed evaluation tested proposed and common standard algo-

rithms in a set of clustering scenarios. In the following, we will shortly

summarize the results of the experiments and their possible implications.

Compactness-based clustering datasets were used to test for the influence

of dimensionality, degree of compactness, and spatial separation of in-

dividual clusters on the clustering accuracy. Dimensionality did not in-

fluence the accuracy of proposed algorithms as well as of standard algo-

rithms. HDBSCAN as well as aoDBSCAN were able to find a correct clus-

tering for the dataset. We expected the curse of dimensionality to take

effect for various algorithms, however the large degree of spatial separa-

tion of the clusters seems to prevented this effect. Results of the "R15"

dataset showed that compact clusters, which are loosely connected and

form a dense area of clusters, could not be clustered correctly by proposed

algorithms. This could have been prevented by providing the true number

of clusters in advance and choosing an appropriate hierarchy cut. How-

ever, this is an unreasonable assumption for the clustering task, since one

of the advantages of DBSCAN is the automatic detection of the number

of clusters. Still, the returned clustering is reasonable interpretation of the

dataset concerning the higher density in the center of the dataset. The "Ag-

gregation" dataset consisted of clusters of differing size and shape. Most

algorithms failed to identify a correct partition of connected clusters. It is

questionable whether the bridges between affected cluster-pairs are neg-

ligible in the context of the connectedness criterion of clusters. All used

objective functions led to nearly similar results. Standard silhouette coef-

ficient performed negligibly better than both concurrents for the "Aggrega-

tion" dataset by correctly separating the cluster pair on the right. A merge

of both clusters would move the center of the resulting dataset to the mid-

dle of the bridge, which leads to a large decrease of the respective silhou-

ette score due to the contained average function. Generally, no preference

for a particular objective function can be justified for compactness-based

cluster scenarios.

In the second part we investigated clustering accuracy for connectedness-

based clusters. In four of six edge correlation did not perform as well as the

two silhouette score variants. Neither the "Moons" datasets nor the "Spi-
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ral" dataset were clustered correctly. Whereas, standard silhouette score

and its density-based interpretation resulted in appropriate parameters

for cluster scenarios containing clusters of equal density. Nevertheless,

due to the limitations of DBSCAN, it is not possible to find an appropri-

ate parameter combination for clustering the "Compound" dataset. Here,

HDBSCAN in combination with non-horizontal cuts exclusively resulted

in a nearly perfect clustering.

Overall proposed methods leaded to comparative results in most cluster-

ing scenarios and even surpassed other clustering algorithms in the con-

text of connectedness-based clusters. Silhouette coefficient and density-

based silhouette coefficient outperformed edge correlation and seem to

be an appropriate choice for the optimization. Nevertheless, HDBSCAN is

the only method capable of detecting clusters of differing density.





5
Conclusions and Future Work

5.1 Conclusions

In the present thesis we improved usability and performance of density-

based clustering algorithms. Using DBSCAN as one common represen-

tative clustering algorithm of this paradigm, we proposed the two hier-

archical extensions mPts-HDBSCAN and ε-HDBSCAN. However, checking

every possible parameter of DBSCAN would be computational inefficient

without optimization. By exploiting monotonicity of neighborhood sets

and the core condition, the hierarchy generation process of proposed al-

gorithms was improved. Thus, only necessary parameter values are pro-

cessed and added to a hierarchy of clusterings. Furthermore, the hierar-

chical clustering process of HDBSCAN was enhanced by interactive visu-

alizations of both proposed algorithms. Those increase the usability of

proposed hierarchical variations of DBSCAN and can help to adjust pa-

rameters for the desired clustering.

Since adjusting DBSCAN parameters by hand is only applicable for low

dimensional datasets, we proposed a greedy optimization process for de-

termining an appropriate value combination. We combined both hierar-

chical clustering algorithms in aoDBSCAN and replaced the necessity of

fixing two parameters with the introduction of an optimization criterion.

The optimization process guarantees to find a local optimal parameter

combination by maximizing the objective function.

Proposed algorithms were compared to various partitioning, hierarchi-

cal and density-based algorithms. Algorithms were compared on various

clustering scenarios based on either compact or connected structures.

HDBSCAN, which used non-horizontal cuts, as well as aoDBSCAN proved

75
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to produce comparable clustering results to other standard algorithms.

HDBSCAN using non-horizontal cuts even surpassed other methods in

detecting clusters, which differ in density. AoDBSCAN showed to be ca-

pable of determining appropriate parameter combinations for DBSCAN

by choosing an optimization criterion. These enhancements increased

the usability of DBSCAN and make it applicable for high dimensional

datasets, for which visual methods fail to provide interpretable feedback

for the choice of parameters.

The development of proposed algorithms was accompanied by the plan-

ning and implementation of interactive visualizations. Those can help

to close the gap between experts and non-expert users by visualizing the

parameter space and corresponding clusterings. The following section

will conclude this work with final remarks about possible future develop-

ments.

5.2 Future Work

In the thesis at hand we proposed multiple algorithms and described their

current state of development. However, the evaluation showed that the

performance of proposed algorithms still needs to be improved to suc-

cessfully cluster various scenarios. In the following, we will summarize

possible extensions and enhancements, which could be subject of future

research.

Developing new objective functions: The aoDBSCAN approach shifted

the preparation for the clustering algorithm from choosing appro-

priate parameters to selecting an internal validation criterion. Our

experiments revealed that different local optima are chosen per clus-

ter validation criterion. We suggest to investigate the influence of

existing rating criteria and developing new density-based internal

validation measures.

Weighted density-based silhouette coefficient: In our experiments den-

sity-based silhouette coefficient was highly influenced by outliers

(see Flame dataset). Weighting the silhouette score of every cluster

by the size of the respective cluster could cope with this problem.

The behavior of a weighted mean density-based silhouette coeffi-
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cient used as an objective function for aoDBSCAN could be subject

of future experiments.

Further improving non-hierarchical cuts: The proposed method for non-

hierarchical cuts is based on height differences of consecutive hier-

archy levels. Large differences in cluster densities would decrease

the efficiency of this approach, because the edge length distribu-

tion would contain multiple normal distributions. A local cutting

criterion would enable us to detect a transition from one to another

normal distribution. ZAHN (1971) proposed a consistency rating of a

hierarchy level by comparing it to the average height of surrounding

cluster levels. Implementing Zahn’s consistency rating for dendro-

grams produced by HDBSCAN could improve the detection rate of

clusters with differing densities.

Non-hierarchical cuts as stability check: Up to this point only horizontal

cuts can be used for aoDBSCAN. Single HDBSCAN hierarchies sup-

port non-horizontal cuts as well. They can be used to find stable

clusters in the dataset by cutting hierarchies of multiple mPts values

and comparing the clustering results. In addition, the stability of a

cluster could be measured by the number of density levels it occurs

in.

Search strategies for appropriate hierarchy levels: In Section 3.2 we dis-

cussed that a large number of hierarchy levels have to be rated to find

the level with maximal internal validation score. A solution for min-

imizing the amount of hierarchy levels is filtering appropriate can-

didates for rating. Another approach would be to apply search algo-

rithms to the hierarchy levels. For example, gradient-descent could

be applied in case the search space is continuous.

Streaming algorithm for HDBSCAN: The minimum spanning tree imple-

mentation proved to be faster because it generated less hierarchy lev-

els. However, the large number of hierarchy levels (2n) can still ren-

der the spanning tree generation unpractical for large datasets. The

thesis of RIBICHINI (2007) summarized graph algorithms for stream-

ing scenarios and reviewed parallel processing techniques for speed-

ing up the generation of minimum spanning trees. The implemen-

tation of parallel processing techniques could reduce the run-time
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of the algorithm and, therefore, speed up the generation of the full

hierarchy for large datasets.

Other hierarchical algorithms: The discussed monotonicity behavior

can also be exploited for other density-based clustering algorithms

including a fixed density-threshold. For example the CLIQUE algo-

rithm could be extended by storing density values of every cell and

building up a hierarchy of clusterings as it was done for HDBSCAN.

Since in our experiments CLIQUE often suffered from the problem

of finding a correct density threshold this approach could automati-

cally detect needed density thresholds per cluster.
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Figure A.1: Clustering results of the R15 dataset.
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Figure A.2: Clustering results of the Aggregation dataset.
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Figure A.3: Clustering results of the Blobs-1000D dataset.
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Figure A.4: Clustering results of the Moons dataset.
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Figure A.5: Clustering results of the BlobsMoon dataset.
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Figure A.6: Clustering results of the Spiral dataset.
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Figure A.7: Clustering results of the Compound dataset.
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Figure A.8: Clustering results of the Flame dataset.
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Figure A.9: Clustering results of the Moons-DifDense dataset
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Abbreviations and Notations

Dataset and clustering acronyms

Acronym Meaning

X dataset
xi i’th point of the dataset X
xi j j’th attribute of point xi

N number of points in the dataset X
P true partition of dataset X
C clustering

Ci i’th cluster of clustering C
ci center of cluster Ci

K number of clusters in clustering C
H hierarchy of clusterings
Q number of hierarchy levels
U membership matrix

ui j membership degree of xi and C j

DBSCAN acronyms

Acronym Meaning

mPts minimal number of points to fulfill the core-condition
ε radius of the neighborhood set

Nε(p) neighborhood set of p with radius ε
coresε,mPts set if cores depending on ε and mPts

d(xi , x j ) distance of points xi and x j

dcore,mPts core distance regarding mPts

dreach,mPts reachability distance regarding mPts
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Validation measure acronyms

Acronym Meaning

SSE sum of squared errors
E entropy of true partition P and clustering C
P purity of true partition P and clustering C
F f-measure score of true partition P and clustering C

M IC mutual information score of true partition P and clustering C
Hom homogeneity of true partition P and clustering C
Com completeness of true partition P and clustering C

V v-measure score of true partition P and clustering C
sC silhouette coefficient of C
sd
C density-based silhouette coefficient of C

D Dunn’s index of C
CVNN Clustering Validation Index based on nearest neighbors of C
ρC edge correlation score of C
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